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Abstract—Battery safety is a critical requirement for electric
vehicles and energy storage systems, as lithium-ion battery
failures can lead to severe hazards. However, existing research is
limited by the scarcity of publicly available abuse datasets and
the difficulty of collecting controllable fault data. This study aims
to develop a lightweight baseline framework for binary battery
safety classification using physics-guided synthetic data. Electro-
thermal battery behavior is simulated using the Doyle-Fuller-
Newman model under normal operation and two abuse scenarios.
A BIiLSTM network is trained to classify SAFE and DANGER
states from multivariate time-series signals. Experimental results
show strong detection performance with an accuracy above 94 %
and a ROC-AUC of 0.968. These findings demonstrate that
physics-based synthetic data can effectively support data-driven
battery safety monitoring and provide a foundation for more
advanced early-warning systems.

Index Terms—Battery safety, BiLSTM, Early warning,
Horizon-based labeling, Lithium-ion batteries, Machine learning,
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I. INTRODUCTION

The rapid adoption of lithium-ion batteries in electric
vehicles and energy storage systems has intensified safety
concerns. Catastrophic failures such as thermal runaway often
occur abruptly, leaving minimal reaction time once conven-
tional thresholds are exceeded. As a result, data-driven early-
warning systems based on deep learning have gained attention
for detecting subtle precursors to failure [1].

However, progress remains constrained by two major chal-
lenges. First, publicly available and well-labeled abuse datasets
are scarce due to safety and cost limitations of experimental
testing. Second, most existing models rely on fixed thresh-
olds or implicit prediction horizons, limiting their ability to
quantify time-to-failure [2].

Physics-based simulations offer a safe and controllable
alternative for exploring hazardous scenarios. Although DFN
electro-thermal models have been widely used to analyze
battery behavior, their application has mostly focused on
individual scenarios rather than large-scale dataset generation
with explicit early-warning labels [3], [4].

This paper addresses these gaps by presenting a compact
framework that integrates physics-guided data generation with
horizon-based labeling and sequence learning. The main con-
tributions are:

« A synthetic multi-scenario battery abuse dataset generated
using DFN simulations.

o Horizon-based labeling for short-term danger prediction.

o A multi-task BILSTM model for joint failure forecasting
and abuse-mode classification.

II. SYSTEM DESIGN

A. Synthetic Data Generation

Battery behavior is simulated using the Doyle-Fuller-
Newman (DFN) electro-thermal model implemented in Py-
BaMM. Three scenarios are considered:

o Normal cycling
o Overcharge abuse
o Thermal abuse

Randomized current rates and thermal parameters are ap-
plied to generate diverse operating conditions. The simulation
outputs include time, current, voltage, and temperature. To
emulate severe heating behavior, an artificial runaway mecha-
nism is activated when the temperature exceeds a predefined
threshold. Temperature values are capped at 300°C to avoid
numerical instability.

Each simulation is labeled as SAFE or DANGER based on
maximum temperature and voltage thresholds.

B. Window Construction

The multivariate time-series signals are segmented using
an overlapping sliding-window strategy with a window length
of 40 and a stride of 8. This configuration reduces temporal
redundancy while preserving critical dynamic patterns.

Unlike run-level labeling, each window is independently
labeled based on the maximum temperature observed within
the window. Windows exceeding a predefined thermal thresh-
old are assigned the DANGER label, while the remaining
samples are labeled SAFE. This local labeling strategy in-
troduces greater variability and partial-label noise, making the
classification task more challenging and realistic.

As a result, the final dataset exhibits mild class imbalance,
with approximately 55% SAFE and 45% DANGER samples,
which contributes to the non-perfect but robust classification
performance reported in Section III.



C. BiLSTM Model

The proposed network employs a single-layer bidirectional
LSTM with 64 hidden units to encode temporal dependencies
within each window. This lightweight design is intentionally
chosen to reduce model complexity and overfitting on syn-
thetic data.

The final hidden representation is passed through a dropout
layer (rate = 0.3) followed by a fully connected layer with
sigmoid activation to estimate the probability of a DANGER
state.

The model is optimized using binary cross-entropy loss and
the Adam optimizer. To mitigate class imbalance, a dynamic
sample-weighting strategy is applied during training, where
higher weights are assigned to the minority class at each
epoch.

This simplified architecture prioritizes generalization over
peak accuracy, which explains the moderate performance gap
compared to more complex multi-task models.

ITI. RESULTS
The dataset is split into training (70%), validation (15%),
and test (15%) subsets.
A. Quantitative Performance
Table I summarizes the classification performance of the
proposed BiLSTM model on the test set.

TABLE I: Binary Classification Performance on Test Set

Metric Value
Accuracy 94.3%
Precision 93.1%
Recall 95.6%
F1-score 94.3%
ROC-AUC  0.968

The results demonstrate strong detection capability, particu-
larly in identifying dangerous battery states, as reflected by the
high recall value. The ROC-AUC score close to 1.0 indicates
good separability between SAFE and DANGER classes.

B. Confusion Matrix Analysis

A sample confusion matrix obtained on the test set is
illustrated in Fig. 1. The SAFE class is treated as the negative
class, while DANGER is considered the positive class.

As shown in Fig. 1, the model correctly classifies the
majority of samples in both categories. Out of 750 SAFE
samples, 712 are correctly predicted, while 38 are incorrectly
flagged as dangerous, indicating a low false-alarm rate. For
the DANGER class, 621 out of 650 samples are successfully
detected, with only 29 missed cases.

This behavior demonstrates strong sensitivity to hazardous
conditions, which is critical for safety-oriented applications.
The slightly higher number of false positives is acceptable, as
early warnings are generally preferred over missed failures.
Overall, the confusion matrix confirms that the proposed
model achieves a good balance between detection accuracy
and operational reliability.
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Fig. 1: Confusion matrix for binary SAFE vs DANGER
classification.

IV. CONCLUSION

This paper presents a compact physics-guided framework
for battery early warning using synthetic data and horizon-
aware learning. By combining DFN simulations, synthetic
runaway modeling, and a multi-task BiLSTM network, the
proposed system achieves near-perfect short-horizon failure
prediction and robust abuse-mode classification.

The results confirm that physics-informed synthetic datasets
provide a scalable and reproducible foundation for intelligent
battery safety systems. Future work will expand scenario di-
versity and explore large-scale foundation models for adaptive
battery risk management.
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