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요 약

본 논문은 전력 품질 파라미터 6종(역률, 유효전력, 전류 불평형률, 누적 전력량 차이, 설비 전력정격, 정격 전압)을 활용한 전력 시계열 데이터 기반
LSTM 모델로 제조설비의 Loading, Unloading, Stop 상태를 자동 분류하는 방법을 제안한다. 실험 결과, 모델의 정확도 98.21%, 운영 상태 분류의
평균 F1-Score 0.9766을 달성하였다. 기존 설비별 개별 모델사용 시평균 정확도 95.66%에 비해 2.55% 높은성능을 보인다. 이를 통해 다양한 설비를
단일 모델로 통합 학습했음에도 경쟁력 있는 성능을 확보함으로써 실제 제조 현장에서의 확장성과 적용 가능성을 입증하였다.

Ⅰ. 서 론

최근 탄소중립 정책이 강화되면서 제품 단위의 탄소 배출량을 정량적으

로 산정할 필요성이증가하고 있다. 특히 유럽연합의탄소국경조정제도와

디지털 제품 여권과 같은규제는 수출입및 공급망전반에서탄소정보의

투명한 공개를 요구한다. 이에 따라 제조 기업은 제품의 탄소발자국을 체

계적으로 산정해야 하는 상황에 직면하고 있다. 탄소발자국은 원자재 채

굴부터제조, 운송, 사용, 폐기까지생애주기전과정에서발생하는온실가

스배출량을의미하며, 이 중 제조단계에서의 배출량 산정은 생산 공정의

에너지 사용량과 직결된다.

제조 단계에서 세부 공정 또는 부품 단위의 탄소 배출량을 추정하기 위

해서는설비별에너지소비패턴을파악하고, 설비의운영상태에따른전

력사용특성을분석할필요가있다. 동일한설비라도가공이실제로수행

되는 구간(Loading), 작업 전환 또는 감속 구간(Unloading), 정지 구간

(Stop) 등 운영 상태에 따라 전력 사용량과 신호 특성이 달라질 수 있다.

Park et al. [1]은 설비의 운영 상태 분류를 위해 전력 신호의시계열정보

를 활용하고 순환 신경망 모델을 적용하여 설비의 운전 상태를 분류하는

방법을 제안하였다. 그러나 해당 접근은 개별 설비의 데이터 특성에 최적

화된 모델로 설계되어, 설비가 추가되거나운영 환경이 변화할 경우, 추가

설비에 대한 데이터 확보와 모델 재학습이 요구되는 한계가 있다. 따라서

본 논문은 설비별 데이터 분포의 차이를 고려하여, 서로 다른 설비에서도

일괄적으로 적용이 가능한 통합 운영 상태 분류 방법을 제안한다.

Ⅱ. 본론

본 논문은 Park et al. [1]의 전력 시계열 기반운영 상태 분류 접근을 참

고하되, 설비별데이터분포차이를반영하여다수설비를단일모델로분

류할 수 있도록 실험을 확장하였다.

본 장에서는 제조설비의 운영 상태를 Loading, Unloading, Stop의 세 가

지 클래스로 분류하는 방법을 기술한다. 그림 1은 제안하는 분류 시스템

의전체구조를나타낸다. 먼저전처리과정에서는설비간의전력데이터

범위 및 분포 차이를 완화하기 위해 Z-score 정규화를 적용하고, 운영 상

태와 연관성이 높은 전력 품질 파라미터를 입력 변수로 선정한다. 선정된

시계열 데이터에 슬라이딩 윈도우(Sliding Window) 기법을 적용하여 일

정 길이의 입력 시퀀스를 구성하고, 이를 Long Short-Term

Memory(LSTM) 모델의 입력으로 사용한다. 마지막으로 LSTM이 학습

한 시간적 의존성을 기반으로 완전 연결층과 Softmax 활성화 함수를 통

해 각 구간의 운영 상태를 분류한다.

그림 1. 전력 품질 기반 제조설비 운영 상태 분류 시스템의 전체 구조



2.1 전력 설비 에너지 데이터셋

본논문에서는 제조설비의운영상태를분류하기위해 AI 허브에서제공

하는 전력 설비 에너지 패턴 및 고장 분석 센서1) 데이터셋을 활용한다.

원본 데이터셋은공작기계, 공기압축기, 보일러등 다양한 설비유형을포

함하며, 본 연구에서는 운영상태클래스(Loading, Unloading, Stop)의 분

포가 상대적으로 균형을 이루는 6종의 설비(file number: 29, 246, 272,

324, 335, 533)를 선정하였다. 선정된 6종 설비의 총 데이터 개수는

227,055개이며, 각 클래스의 평균 비율은 Loading 35.9%, Unloading

29.75%, Stop 34.53%로 구성된다.

2.2 전력 설비의 운영 상태 특징 추출

입력 파라미터는 Park et al. [1]를 참고하여 역률 평균( ), 유효전력
평균( ), 전류 불평형률( ), 누적 전력량 차이(∆)를 선정하였으
며, 설비 간의 정격 및 운전 조건 차이를 반영하기 위해 설비 전력정격

( )과 정격 전압( )을 추가 입력으로 포함하였다. 설비 전력정격 및
정격 전압은 시간에 무관한 설비의 고유한 특성이므로, 각 윈도우의 모든

시간 스텝에 동일한 값으로 반복 입력되어 최종 입력 차원을 (10, 6)으로

구성하였다.

전처리과정에서첫번째로, 선정된 6종 설비의데이터를통합하여각파

라미터별로전체 학습데이터를기준으로평균()과 표준편차()를 계산
하여 Z-score(   )로 정규화하였다[2]. Z-Score를 사용한
이유는 전력 계측 데이터가 현장 환경(부하 변동, 센서 잡음, 통신 지연

등)으로 인해 순간적인 스파이크나 결측치가 발생할 수있어 이상치에 상

대적으로 덜 민감하고 분포 중심으로 범위를 정규화하기 때문이다. 이때

검증 및 테스트 데이터에는 학습 데이터에서 도출된 동일한 과 을 적
용하여 데이터 누수를 방지하였다.

두번째로, 시계열특성을반영하기위해정규화된데이터에슬라이딩윈

도우 기법을 사용하여 일정 길이의 연속구간을 하나의입력시퀀스로구

성하였다. 데이터셋은 1분 간격으로 측정되므로, 슬라이딩 윈도우 길이를

10으로 설정하여 각샘플이 10분 구간의 정보를 포함하도록 하였다. 윈도

우는 1분 간격(stride=1)으로 이동하여 연속된 샘플을 생성한다. 각 입력

시퀀스의정답 라벨은윈도우의마지막시점에 해당하는상태로부여하였

으며, 이는 윈도우가 포함하는 과거의 관측값을 활용하여 현재 시점의 운

영 상태를 추정하도록 하는 설정으로, 실시간 적용 관점을 고려한다.

2.3 LSTM 모델

본 연구는 제조설비의 운영 상태를 Loading, Unloading, Stop으로 분류

하기 위해 LSTM 모델을 활용한다. 제조설비의 운영 상태는 순간적으로

변화하지않고 일정기간의전력패턴 추이로나타나므로, 앞서 구성된 10

분 단위 시계열 데이터를 모델의 입력으로사용한다. LSTM 레이어는 시

계열 데이터의 장기 의존성을 학습하여 과거 시간 스텝의 정보를 효과적

으로 활용함으로써 각 시간 구간에서의 운영 상태 변화를 포착한다[3].

모델 구조는 64개 유닛의 LSTM 레이어 이후 Dropout을 배치하여 과적

합을 방지하며, 두 개의 완전 연결 레이어를 통해 특징을 축소한 뒤 최종

적으로 Softmax 활성화함수로 3가지운영상태의확률을 출력한다. 학습

과정에서 조기 종료를 적용하여 검증 손실이 더 이상 개선되지 않을 때

학습을 중단함으로써 일반화 성능을 확보하였다.

1) 본 연구에 활용된데이터셋은과학기술정보통신부의 재원으로한국지능정보사

회진흥원의 지원을 받아 구축되었으며, aihub.or.kr에서 다운로드가 가능하다.

Ⅲ. 결과

LSTM 모델을 기반으로 설비 6종의 데이터를 통합하여 학습한 결과, 전

체 운영상태분류정확도는 98.21%를 기록하였다(표 1). 운영 상태 3종에

대한 정밀도(Precision), 재현율(Recall), F1-Score 평균은 각각 0.9790,

0.9744, 0.9766으로, 세 지표가 유사한 수준을 보여 특정 클래스에 편향되

지 않고 균형 있게 학습되었음을 확인할 수 있다.

한편 참고 논문[1]에서는 설비별로서로 다른 모델 구조와 하이퍼파라미

터를 적용하였으며, 개별 설비 기준 정확도는 92.53%에서 99.95% 범위

(평균 95.66%)의 성능을 보고하였다. 이를 고려할 때, 제안 방법은 개별

설비최상위 성능과비교하면 다소낮을 수있으나, 서로 다른 6종 설비의

데이터를단일모델로 통합하여학습했음에도불구하고평균 정확도대비

높은 성능을 달성했다는 점과 실용적인 관점에서 충분히 우수한 분류 성

능을 보인다고 평가할 수 있다.

Ⅳ. 결론

본논문에서는 AI 허브전력설비에너지패턴및고장분석센서데이터

셋을 활용하여 서로 다른 6종 제조설비의 운영 상태를 단일 LSTM 기반

모델로 통합 분류하는 방법을 제안하였으며, Z-score 정규화와 슬라이딩

윈도우 전처리를 통해 설비 간 데이터 분포 차이를 완화하고 전력 품질

및 설비 정격 정보를 통합한 입력 특성을 구성함으로써 전체 정확도

98.21%, 평균 Precision 0.9790, Recall 0.9744, F1-Score 0.9766의 균형잡

힌 성능을 달성하였다. 또한 설비별로 서로 다른 모델과 하이퍼파라미터

를 사용한 기존 연구의 평균 정확도 95.66%와 비교했을 때, 서로 다른 설

비 6종을하나의모델로 통합학습했음에도 경쟁력있는성능을 유지함을

확인하였다. 이를 통해 디지털 트윈이나 공정별 탄소 원단위로 결합하여,

본 연구에서 분류한 Loading/Unloading/Stop 운영 상태 정보를 부품 또

는 제품 단위의 탄소 배출량 산정에 활용할 수 있다.
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표 1. LSTM 모델의 운영 상태별 분류 성능
운영상태 정확도 정밀도 재현율 F1-Score
Loading

98.21%
0.9847 0.9990 0.9918

Unloading 0.9913 0.9854 0.9832
Stop 0.9609 0.9488 0.9548


