C/C++ tH] Rust9 W=z <t

s
il

7]

et a

A

A4 B WAUSE £

Y
2, Avke, A5
a3l

{bryan0126, alicel225kim, tomking0820, ekdms3809, dckim'}@kookmin.ac.kr

A Comparative Analysis of Memory Safety Guarantee Mechanisms in Rust and C/C++

Ahn Seung-Min, Kim Ye-Jin, Kim Yae-Chan, Kwon Da-Eun, Kim Dong-Chan"
Kookmin University

Q

a

ok
=1

C/Cr+e E9AA L AWt = A|2E] 5 AFE ~ZEY o] skl] &-g5o] o) vna] & Fokgo] 71913 Hot #A7} A|&H 07 Ky
L 9le}k A Wael] w2 buffer overflow, use-after—free, dangling pointer$t 28 w2 2] obdAl ATHS A #oFdel oF /38 A3}, B =io
olgg BAE ¢3lslr] A3 vietez Alokd Rust A1) 71 w4 S 45k, 43054 727 Option EFY, 44 74} 2 &&fo]x 74t
A Aol & A EAo] A gdol AlEy e Bigshe Wy 11 ovE Aeldth T3 Rusts A HSE 53] 7HA Y glole
5] 979} diojE] go|~g ofiatn, F74AQ1 HE S| = §lo] C/Crroll Fahe sy vl S SAld 24T F 35S T3t
I.AE 2 A3 Aol 7Feglen @dglol FAd g Aoz BuHCH5].

A¢(Low-Level) Z21efH oloje 3], dult= AlzE o)
EA xee} o] st=do] Aol dig 2 Aojrt 27 fof
oA AREAT 197030l AEkE C dojgl o] 2 g Cris o]

o

LTE FEde AolB2A A 2F LZES o] At &8E o] git
e sh=go] Abglel] Tk AA] s s18ehs dlofollA = wEE

HY7 AR A A o=, 1 A w Ry #H F ko] 2453
o2 BauHI 9k 20233 7= CISASH NSAZF % LES “The
Case for Memory Safe Roadmaps” H.iAel] wew wxa] shdAS
o] Aol A AR e Aol FHE ATEY oA HuHE F]
oF ol of 389] 27} wjg] Fe AgeA 7]13TH1]. 2024 v = W)
ofyt B w3 wjze] oA oloj(Memory safe language) 29 A3HS
AaEEA, 1 dA 2 RustZ A sHATH2.

Rust+ 2A(Ownership) 7]5ke] W xe] 2] A7
2 AdY glolk A3t gfYel wixe] shddE H53
HAe} B =1
A E AX 8 5 secure coding ZHH A Ruste] 7N
Rust®] W2z ¢hdA B4 mAUSS A8

T =

O. C/C++9] B3t AYA 3 £ UE A

C/Cr+E FEHE AZEY oA thdet W] #al Ml o]
HuEa ek buffer overflows WG AAE 2isl= 27] o2
Qe Q17 w7t QAR A= Aokdoln, 28 EE 3 FooA] Ao
FEo| MzE 7MeAS XYtk 20239 Huy CVE-2023-48632
libwebp 2tolB2iz]e] 3 Wy eB¥Z2% HH o2 Chrome, Firefox,
Edge 5 2 He}$-A9} th4=9] Electron 7%k o Zg]|A o] Aol JaFS
B AA FA kg AR EaE T3]

use-after—freex= aAIE 2] Gl digt Fto] WASE F A
oF &g A Qo] FE Ao ojojd F girt 2024 K
Chrome B2}$-#12] CVE-2024-3914% V8 JavaScript 91%12] use-after—free
Aoz Q& 94 F= Ao 7hedd Al HasATH4].
double freet Y "2 E5& TEo7 dAsh: SF=E, ¢ vlEt
o] &4 fad 4= 9ok 20249 Hus CVE-2024-1086S Linux 7
A9 netfilter nf_tables 74 240014 double free Zgto] o149 Alg&2 &

- 4
T =2

.
= g zxsto

null pointer dereference SEOTE] 24 223 vy
4 85 88k Fddolt) 2024 Linux 749 CVE-2024-49921
& AMD GPU =2tol¥ o)l 4] null pointer dereference® 71'd #Y& &
W 5 glE Aoz FRIFHTHE

race condition HE|2HE 84 TE Alad A BAdAA F713
glo] T Aol TA Hod W) @A 5 9lrk 2024 OpenSSHE
CVE-2024-6387(regreSSHion)> #1718 #E#2] race condition® 2
3 2= glo] AN root PFoE FE Aol 7h5slrka Wy

FHE APl oWet7] 93 secure coding

tH7). o]l wt o]t F kil S
HE9 293 o] o HAR =olEo] gith

oL ¥2 o,

II. Rust9] 7 w4

UM AN HH FHE ARl dWEly] $lek WHOR secure
coding ¥ 2o] g-85o] gt} secure coding AZEY o] s 3o
A Het H S Aol WRebr] Ak 2 93 2 7S ofn| s8],
OWASP % 52 Hel 7]#-& secure coding 7}o]=2el S AA 8k gle
o mxy 4, 98 A5, R A 58 T8 FHoE Rl 11
U AEA4Q secure coding At WAL AWzl £o, I= 2R, 4A
BA B 5ol &SRR o 9 FE wiAlsly] o€k A7) 9

Rust™ o|2]g $HAIE $hs}dl7] $13l| secure coding 920] Aoy AA 2

ke
=
Q

R

oA A EE AAFJE Rust:E 20068 Mozilla 2% 7zt
Graydon Hoare®] 7§¢l Z2AER A)Z¥] on 20099 Mozilla7} 32 &

A1) A2k o]F Servo ZAES] 74 o] AesIelck Ruste] A7
B OO BEH A4S FAUAE vme] ksl A ob
42 7 olol] masle o ek B AolNE ol A SR A
@3] 919 Ruste] TAH Wnel by wg WAUZS $A,

=

V. Rustd] W=z A4 B3 WAUF

2588 Ruste] &4 /dog 7t gholle o slhute] 27 Bofsn] A
Ape] 23327} Fn s 3 gho] AFs o= sjAldrt. Colxle sjAle wlke]
ofl tigh At = T8 SAE defelol A = 9lort, Rustol M &7
o] o¥l gh& Tl AMEH & W ATt S F7} WAl R use-after—free
<} double free® AT 4= vk B A= [28 1] AT

2 T 2

fn main() {
let ptr = Box::new(42);
drop(ptr); // afrd &4l
// println!(“{}”’, ptr); // =4 9le]: value borrowed after move

[

(2% 1) &/ o4 2=
F4g dolHel el shute] 7h Hx Ee
tes Ao A doly #Ho|~E 7A%Y
& & 13} Fetoll whe T A SA A2 24
| Apdechad A= (1% 2]0 A
fn main() {
let mut data = vec![1, 2, 3];

L
ol
rlo

=]

]——‘J_—Z

pud

N
=
ol

[

L=
-
&

ol

N

>~

N
ok

let rl = &data;
let r2 = &data;
printIn!("{:?}, {:?}", rl, r2);

let r3 = &mut data; // 7} #*
// printlnl("{}", r1); // A3 ol B9 Fxe} 7p Hx TA AR BV
r3.push(4);

—

2) e oA 2=
FHe A2 8 WIE A9Y gl #3559 dangling pointer
E WA dE 50, CollM 8l8¥e A W Zx w2 Rustoll A
& A 39 A= (29 3] AAsIT
fn get_local ref() ->&i32{
let local =42;
&local // A3 elle]:

il

ol
o
ne,
to

cannot return reference to local variable

}
fn main() {

// let ptr = get_local_ref();
¥

(2 3) 14 oA 3=
Option E}Y2 4 ¥AHE g9 Alzadoz tiA|ste] null pointer
dereference® A8t} Rusts= #t¢] H-A1E Option<T>ZE x &3, W
Hogholl A2 W) BAA 271 AgE a9k #9 dAle [4]0
A2 BT
fn find_value(arr:&[i32], target:i32) -> Option<&i32> {
arr.iter().find(|&&x|x == target)

}
fn main() {

let arr = [1, 2, 3];
match find_value(&rr, 5) {
Some(val) => println!("{}", val),
None => println!("Not found"), // HAI4 g 74

}

(23 4) Option 94l Z=
buffer overflows= 77 Ate} Eefo]~E E3f ¢halett Rustdll A e
Qe 9] 3t Hzo] Heke) IO olojd 9om, get(S A
&5t Option<T>= Wtk o] o] A4 o F-5 WAz A2 ¢
Atk #H A= [2” 5ol AAeH o
fn main() {
let arr = [1, 2, 3];
// println!("{}", arr[10]); // ©E}] ¥4 index out of bounds
match arr.get(10) { // ¢HA3H At
Some(val) => println!("{}", val),
None => println!("Index out of bounds"),

(23 5) Buffer overflow WA oA 7=
o1} Z-& 54O Rust= /MR Aol &3] ¥a Hude
2o A secure codingS A8 “memory safe by default” 32 the]

S AAE) Rusts 20259 Linux 7189 &4] ddo]& Ao 23 o
AE 53901, Android, AWS, Microsoft Windows Sol|A] 2-g0]
s 2 9tH9). Google®] Android B¢t B B.ito] wEW Rust £%)
°]% Android®] "Xe] A FH A v&-2 20199 6%l 4 2024
24% = 7rA3FATH10].

45 FHANE Ruste CLC++9 dise ¢ AxE HITh
Computer Language Benchmarks Game®] =74 23} Rusti= C9} ¥l
sho] g darE]Fel A 5-10% ool A& A7k 2ol S HolTH11].
o= Rust®] &g kA AZo] Aoty el axo] HEY oH
=7t AEA] e AR 1S 443K Zero-Cost Abstraction) €122}
A¥te). 3 Discordi= Rust A3k o]F 7M1 AHEHZ Q13 2]90]
Ay B uskdei{12].

ik Ruste] WRe] QFA Bl SAIZF EAI% unsafe 55 ol
A i grEe] AEEA gonZ iyt A3 dEe] QPHAdS #9l
Aok 3it}, FFI(Foreign Function Interface)& 53 C 2lo]He{glE 253}
= 7250l unsafe A&l Qs ouf &5 C Z=2] FoFo] Rust &
2 Hold 7FeAS wiAlel7] of gtk 20244 715E cratesiod]l S&H A3
°lE Z 19.11%7} unsafe 7|9 =5 A8k 91, 34.35% unsafed A
3= o AeolEE 47 sEehe o= YERTHIAL

B wm8o CfC 78 AZEYolo M By wwe] v FoFd o]
I 3 AA AHIE B8 AlAEa, olelgk FoFde] Bt AR of
S AElskar) T3 At $A19] secure coding o] <
W3] wjAlsl7] ol dths 3AE W e R Rust7} 278 1
17} Option EFY, A 7AL 9 >o]~ 58 B3 3 g
b S skl dAUSS et A A
d A2 E <AZ Rust7 WIEE b o2 9] 23 55

o2 AAE L glom AL A9t T vl ATE F)
Wk /AT s §A7F 4H 7Fe s skt bt unsafe AHS-2}

SolMe obAA B AgkE f glomz =9 A dY
#ajoh A Ak deko] Wahs|ofof sl

ACKNOWLEDGMENT
o] =H& 205 E BR(He 7| EHHEARL)Y] AP o7 HHEANTF
HrrA e A ¢S ol 3¥ A7 (No. RS-2024-00397105, KCMVP
BokpE 3 o BE AAS 93 dAv|e A,

PN

FaEd
[1] CISA, NSA, "The Case for Memory Safe Roadmaps”, 2023.
[2] The White House, "Back to the Building Blocks”, ONCD, 2024.
[3] NIST NVD, "CVE-2023-4863: libwebp heap buffer overflow”, 2023.
[4] NIST NVD, "CVE-2024-3914: Chrome V8 use-after—free”, 2024.
[5] NIST NVD, "CVE-2024-1086: Linux nf_tables double-free”, 2024.
[6] NIST NVD, "CVE-2024-49921: AMDGPU NULL pointer deref”, 2024.
[7] Qualys, "CVE-2024-6387 (regreSSHion): OpenSSH race condition”, 2024.
8] OWASP, "Secure Coding Practices Quick Reference Guide” 2024.
9] LWN.net, "The end of the kernel Rust experiment”, 2025.
10] Google, "Eliminating Memory Safety Vulnerabilities”, 2024.
11] The Benchmarks Game, "Rust vs C clang - Which programs are
fastest?”, Debian, 2024.
[12] Discord Engineering, "Why Discord is switching from Go to
Rust”, Discord Blog, 2020.
[13] Rust Foundation, "Unsafe Rust in the Wild: Notes on the Current
State of Unsafe Rust,” 2024.
[14] Google Open Source Blog, "Rust fact vs. fiction: 5 Insights from
Google’s Rust journey in 2022", 2023.

[
[
[
[

