
C/C++ 대비 Rust의 메모리 안전성 보장 메커니즘 분석

안승민, 김예진, 김예찬, 권다은, 김동찬*

국민대학교

{bryan0126, alice1225kim, tomking0820, ekdms3809, dckim*}@kookmin.ac.kr

A Comparative Analysis of Memory Safety Guarantee Mechanisms in Rust and C/C++

　Ahn Seung-Min, Kim Ye-Jin, Kim Yae-Chan, Kwon Da-Eun, Kim Dong-Chan*

Kookmin University

요 약

C/C++는운영체제및임베디드시스템등저수준소프트웨어개발에널리활용되어왔으나, 메모리관련취약점에기인한보안문제가지속적으로보고되
고있다. 선행보고에따르면 buffer overflow, use-after-free, dangling pointer와 같은메모리안전성결함은전체취약점의약 2/3을차지한다. 본논문은
이러한 문제를 완화하기 위한 대안으로 제안된 Rust 언어의 개발 배경을 분석하고, 소유권·빌림·수명 규칙과 Option 타입, 경계 검사 및 슬라이스 기반
접근 제어 등 핵심 특성이 컴파일 타임에 메모리 안전성을 보장하는 방식과 그 의미를 정리한다. 또한 Rust는 정적 검증을 통해 가비지 컬렉터 없이도
메모리 오류와 데이터 레이스를 예방하며, 추가적인 런타임 오버헤드 없이 C/C++에 준하는 성능과 메모리 안전성을 동시에 달성할 수 있음을 주장한다.

Ⅰ. 서 론

저수준(Low-Level) 프로그래밍 언어는 운영체제, 임베디드 시스템, 네
트워크 인프라와 같이 하드웨어 자원에 대한 직접 제어가 요구되는 분야
에서 사용된다. 1970년대에 개발된 C 언어와 이를 확장한 C++는 이러한
요구를 충족하는 언어로서 시스템 소프트웨어 개발에 활용되어 왔다.

그러나하드웨어자원에대한직접접근을허용하는언어에서는메모리
관리가 개발자에게 크게 의존하며, 그 결과 메모리 관련 취약점이 지속적
으로 보고되고 있다. 2023년 미국 CISA와 NSA가 공동 발표한 “The
Case for Memory Safe Roadmaps” 보고서에 따르면, 메모리 안전성을
언어차원에서 보장하지않는언어로구현된 소프트웨어에서보고되는취
약점의 약 3분의 2가 메모리 관련 결함에서 기인한다[1]. 2024년 미국 백
악관 보고서 또한 메모리 안전 언어(Memory safe language)로의 전환을
권고하면서, 그 예시로 Rust를 제시하였다[2].

Rust는 소유권(Ownership) 기반의 메모리 관리체계를도입하여, 가비
지 컬렉터없이도 컴파일타임에 메모리안전성을 검증할 수있도록 설계
되었다. 본 논문은 C/C++에서 보고된 메모리 관련 취약점의 유형과 대표
사례를제시한뒤, secure coding 관점에서 Rust의 개발배경을정리하고,
Rust의 메모리 안전성 보장 메커니즘을 분석한다.

Ⅱ. C/C++의 보안 취약점 유형 및 대표 사례

C/C++로 구현된 소프트웨어에서는 다양한 메모리 관련 보안 취약점이
보고되고 있다. buffer overflow는 배열 경계를 초과하는 쓰기 동작으로
인해 인접 메모리가 덮어써지는 취약점이며, 스택 또는 힙 영역에서 제어
흐름이 변조될 가능성을 초래한다. 2023년 보고된 CVE-2023-4863은
libwebp 라이브러리의 힙 버퍼 오버플로우 취약점으로, Chrome, Firefox,
Edge 등 주요 브라우저와 다수의 Electron 기반 애플리케이션에 영향을
미쳤고 실제 공격에 악용된 사례로 보고되었다[3].
use-after-free는 해제된 메모리 영역에 대한 접근이 발생하는 취약점
으로, 악용될 경우 임의 코드 실행으로 이어질 수 있다. 2024년 보고된
Chrome브라우저의CVE-2024-3914는V8 JavaScript 엔진의use-after-free
결함으로 인해 원격 코드 실행이 가능했던 사례로 보고되었다[4].
double free는 동일 메모리 블록을 중복으로 해제하는 오류로, 힙 메타
데이터 손상을 유발할수 있다. 2024년보고된CVE-2024-1086은 Linux커
널의 netfilter nf_tables 구성요소에서 double free 결함이확인된사례로, 로

컬 권한 상승이 가능했으며 랜섬웨어 공격에 악용된 것으로 보고되었다[5].
null pointer dereference는 널 포인터를역참조함으로써 프로그램 비정
상 종료를 유발하는 취약점이다. 2024년 Linux 커널의 CVE-2024-49921
은 AMD GPU 드라이버에서 null pointer dereference로 커널 패닉을 유
발할 수 있는 것으로 확인되었다[6].
race condition은 멀티스레드 환경 또는 시그널 처리 과정에서 동기화
없이 공유 자원에 동시 접근할 때 발생할 수 있다. 2024년 OpenSSH의
CVE-2024-6387(regreSSHion)은 시그널 핸들러의 race condition으로
인해 인증 없이 원격에서 root 권한으로 코드 실행이 가능하다고 보고되
었다[7]. 이에 따라 이러한 취약점을사전에 예방하기 위한 secure coding
방법론의 도입과 발전이 중요한 과제로 논의되어 왔다.

Ⅲ. Rust의 개발 배경

앞서 제시한 취약점 유형을 사전에 예방하기 위한 방법으로 secure
coding 방법론이활용되어왔다. secure coding은 소프트웨어개발과정에
서보안취약점을사전에방지하기위한코딩원칙및기법을의미한다[8].
OWASP 등주요보안기관은 secure coding 가이드라인을제시하고있으
며, 메모리관리, 입력검증, 오류처리등을주요항목으로다룬다[8]. 그러
나 전통적인 secure coding 접근 방식은 개발자의 주의, 코드 리뷰, 정적
분석 도구 등에 의존하므로 인적 오류를 배제하기 어렵다는 한계가 있다.
Rust는 이러한한계를완화하기위해 secure coding 원칙이언어설계차
원에서 강제되도록 설계되었다. Rust는 2006년 Mozilla 소속 개발자
Graydon Hoare의개인프로젝트로시작되었으며, 2009년Mozilla가공식후
원하기시작한이후 Servo 프로젝트의구현언어로채택되었다. Rust의설계
목표는 C/C++와동등한성능을유지하면서도메모리안전성과스레드안전
성을컴파일타임에보장하는데있다. 다음절에서는이러한설계목표를실
현하기 위한 Rust의 구체적인 메모리 안전성 보장 메커니즘을 분석한다.

Ⅳ. Rust의 메모리 안전성 보장 메커니즘

소유권은Rust의핵심개념으로,각값에는단하나의소유자가부여되며소유
자의스코프가종료되면해당값이자동으로해제된다. C에서는해제된메모리
에대한접근또는중복해제가런타임에발생할수있으나, Rust에서는소유권
이이전된값을다시사용하려할때컴파일오류가발생하므로use-after-free
와 double free를 방지할 수있다. 관련 예시는 [그림 1]에 제시하였다.

빌림은동일한 데이터에대해 하나의가변참조또는 다수의불변참조
만 존재하도록 강제함으로써 데이터 레이스를 컴파일 타임에 방지한다.
이를통해동기화누락에따른공유자원동시접근문제를컴파일단계에
서 차단한다.관련 예시는 [그림 2]에 제시하였다.

수명은 참조의 유효 범위를 컴파일 타임에 검증하여 dangling pointer
를 방지한다. 예를들어, C에서 허용되는지역변수참조반환은 Rust에서
컴파일 오류로 처리된다. 관련 예시는 [그림 3]에 제시하였다.

Option 타입은 널 포인터를 타입 시스템으로 대체하여 null pointer
dereference를 방지한다. Rust는 값의부재를 Option<T>로표현하며, 내
부 값에 접근할 때 명시적 분기 처리를 요구한다. 관련 예시는 [그림 4]에
제시하였다.

buffer overflow는 경계검사와 슬라이스를 통해 완화된다. Rust에서는
인덱스 범위 초과 접근이 런타임 패닉으로 이어질 수 있으며, get()을 사
용하면 Option<T>로 반환되어 값의 존재 여부를 명시적으로 처리할 수
있다. 관련 예시는 [그림 5]에 제시하였다.

이와 같은 특성으로 Rust는 개발자의 실수에 의존하지 않고 컴파일러
수준에서 secure coding을 강제하는 “memory safe by default” 패러다임

을제시한다. Rust는 2025년 Linux 커널의 공식언어로확정되어 실험단
계를 종료하였으며, Android, AWS, Microsoft Windows 등에서 적용이
확대되고 있다[9]. Google의 Android 보안 팀 보고에 따르면 Rust 도입
이후 Android의 메모리 안전성 취약점 비율은 2019년 76%에서 2024년
24%로 감소하였다[10].
성능 측면에서도 Rust는 C/C++와 대등한 수준의 결과를 보인다.
Computer Language Benchmarks Game의 측정 결과, Rust는 C와 비교
하여대부분의알고리즘에서 5-10% 이내의실행시간 차이를보인다[11].
이는 Rust의 메모리 안전성 검증이 컴파일 타임에 수행되어 런타임 오버
헤드가 발생하지 않는 제로 비용 추상화(Zero-Cost Abstraction) 원칙과
연관된다. 또한 Discord는 Rust 전환 이후 가비지 컬렉터로 인한 지연이
감소했다고 보고하였다[12].
다만 Rust의 메모리안전성보장에는한계가존재한다. unsafe 블록내에
서는소유권규칙이적용되지않으므로개발자가직접메모리안전성을책임
져야한다. FFI(Foreign Function Interface)를통해 C 라이브러리를호출하
는경우에도unsafe 사용이필요하며, 이때외부 C코드의취약점이Rust 코
드로전이될가능성을배제하기어렵다. 2024년기준 crates.io에등록된크레
이트중 19.11%가 unsafe 키워드를사용하고있으며, 34.35%는unsafe를사
용하는 다른 크레이트를 직접 호출하는 것으로 나타났다[13].

Ⅴ. 결론

본논문은 C/C++ 기반 소프트웨어에서보고되는메모리관련취약점의
대표유형을실제사례를통해제시하고, 이러한취약점이보안침해로이
어질수 있음을정리하였다. 또한 개발자 중심의 secure coding 접근이인
적 오류를완전히 배제하기어렵다는 한계를바탕으로, Rust가 소유권·빌
림·수명 규칙과 Option 타입, 경계 검사 및 슬라이스등을 통해 컴파일타
임에 메모리 안전성을 강화하는 메커니즘을 갖는다는 점을 제시하였다.
아울러 관련 자료를 근거로 Rust가 메모리 안전 언어로의 전환 흐름에
서중요한대안으로제시되고있으며, 적용 사례와성능비교결과를통해
보안 개선과 성능 유지가 양립 가능함을 주장하였다. 다만 unsafe 사용과
외부 코드 연동에서는 안전성 보장이 제한될 수 있으므로, 도입 시 해당
구간에 대한 관리와 점진적 전환 전략이 병행되어야 한다.

ACKNOWLEDGMENT

이 논문은 2025년도 정부(과학기술정보통신부)의 재원으로 정보통신기획
평가원의 지원을 받아 수행된 연구임(No. RS-2024-00397105, KCMVP
보안수준 3 암호 모듈 제작을 위한 핵심기술 개발).

참 고 문 헌

[1] CISA, NSA, "The Case for Memory Safe Roadmaps", 2023.
[2] The White House, "Back to the Building Blocks", ONCD, 2024.
[3] NIST NVD, "CVE-2023-4863: libwebp heap buffer overflow”, 2023.
[4] NIST NVD, "CVE-2024-3914: Chrome V8 use-after-free", 2024.
[5] NIST NVD, "CVE-2024-1086: Linux nf_tables double-free", 2024.
[6] NIST NVD, "CVE-2024-49921: AMDGPU NULL pointer deref", 2024.
[7] Qualys, "CVE-2024-6387 (regreSSHion): OpenSSH race condition", 2024.
[8] OWASP, "Secure Coding Practices Quick Reference Guide" 2024.
[9] LWN.net, "The end of the kernel Rust experiment", 2025.
[10] Google, "Eliminating Memory Safety Vulnerabilities", 2024.
[11] The Benchmarks Game, "Rust vs C clang - Which programs are
fastest?", Debian, 2024.
[12] Discord Engineering, "Why Discord is switching from Go to
Rust", Discord Blog, 2020.
[13] Rust Foundation, "Unsafe Rust in the Wild: Notes on the Current
State of Unsafe Rust," 2024.
[14] Google Open Source Blog, "Rust fact vs. fiction: 5 Insights from
Google's Rust journey in 2022", 2023.

fn main() {
 let ptr = Box::new(42);
 drop(ptr); // 소유권 해제
 // println!(“{}”, ptr); // 컴파일 에러: value borrowed after move
}

[그림 1] 소유권 예제 코드

fn main() {
 let mut data = vec![1, 2, 3];

 let r1 = &data; // 불변 참조 1
 let r2 = &data; // 불변 참조 2 (허용)
 println!("{:?}, {:?}", r1, r2);

 let r3 = &mut data; // 가변 참조
 // println!("{}", r1); // 컴파일 에러: 불변 참조와 가변 참조 동시 사용 불가
 r3.push(4);
}

[그림 2] 빌림 예제 코드

fn get_local_ref() ->&i32{
 let local =42;
 &local // 컴파일 에러: cannot return reference to local variable
}
fn main() {
 // let ptr = get_local_ref();
}

[그림 3] 수명 예제 코드

fn find_value(arr:&[i32], target:i32) -> Option<&i32> {
 arr.iter().find(|&&x|x == target)
}
fn main() {
 let arr = [1, 2, 3];
 match find_value(&arr, 5) {
 Some(val) => println!("{}", val),
 None => println!("Not found"), // 명시적 처리 강제
 }
}

[그림 4] Option 예제 코드

fn main() {
 let arr = [1, 2, 3];
 // println!("{}", arr[10]); // 런타임 패닉: index out of bounds
 match arr.get(10) { // 안전한 접근
 Some(val) => println!("{}", val),
 None => println!("Index out of bounds"),
 }
}

[그림 5] Buffer overflow 방지 예제 코드

