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fn main() {
let ptr = Box::new(42);
drop(ptr); // afrd &4l
// println!(“{}”’, ptr); // =4 9le]: value borrowed after move

[

(2% 1) &/ o4 2=
F4g dolHel el shute] 7h Hx Ee
tes Ao A doly #Ho|~E 7A%Y
& & 13} Fetoll whe T A SA A2 24
| Apdechad A= (1% 2]0 A
fn main() {
let mut data = vec![1, 2, 3];
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let rl = &data;
let r2 = &data;
printIn!("{:?}, {:?}", rl, r2);

let r3 = &mut data; // 7} #*
// printlnl("{}", r1); // A3 ol B9 Fxe} 7p Hx TA AR BV
r3.push(4);
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fn get_local ref() ->&i32{
let local =42;
&local // A3 elle]:
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fn main() {

// let ptr = get_local_ref();
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fn find_value(arr:&[i32], target:i32) -> Option<&i32> {
arr.iter().find(|&&x|x == target)

}
fn main() {

let arr = [1, 2, 3];
match find_value(&rr, 5) {
Some(val) => println!("{}", val),
None => println!("Not found"), // HAI4 g 74
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