A System Design for Integrating Large Language
Models into Flutter Applications

Odinachi Udemezuo Nwankwo, Hee-Jae Shin, Dong-Seong Kim, Jae Min Lee
Department of IT Convergence, Kumoh National Institute of Technology, Gumi, South Korea
{odinachi, shinheejae, dskim, ljmpaul,} @kumoh.ac.kr

Abstract—The increasing integration of Large Language Mod-
els (LLMs) into desktop applications raises serious concerns
regarding user data privacy, latency, and dependency on cloud
infrastructures. This paper presents a privacy-preserving design
for integrating locally hosted LLMs into Flutter applications
using Ollama. The proposed architecture strictly enforces layered
separation between the user interface, business logic, and data
access components, ensuring that sensitive user prompts never
leave the device. The design is suitable for real-world deployment
in privacy-critical desktop applications.

Index Terms—LLM, Al, Ollama, Flutter

I. INTRODUCTION

Recent advances in LLMs have enabled conversational Al
systems across many application areas [1]. However, most
deployments still rely on cloud-hosted models, which require
sending user data to remote servers. This can create major
issues such as privacy leakage [2], regulatory non-compliance,
higher latency, and weak offline usability—especially for
sensitive domains like healthcare, finance, and personal pro-
ductivity.

Researchers in [3] show that running LLMs locally can
reduce costs and broaden access to Al development, using
India as their main case study. With Ollama and a study in-
volving 180 developers, they found local deployment enabled
roughly twice as many experiments and reduced costs by about
33%, while also improving learning about how AI systems
work. Their mixed-method approach combined surveys, code
analysis, and interviews, measuring productivity, cost, and
learning outcomes. Key limitations included dependence on
RTX 3060 GPUs, and some performance gaps compared to
commercial APIs such as GPT-4 [3].

To address these limitations, local LLM execution has
emerged as a viable alternative, enabled by efficient open-
source models and lightweight inference frameworks. Nev-
ertheless, integrating local LLMs into cross-platform mobile
frameworks such as Flutter remains underexplored, especially
from a software architecture and privacy-by-design perspec-
tive.

II. PROPOSED METHODOLOGY

The proposed methodology adopts a layered architecture
composed of the Application Layer, Business Logic Layer,
Data Access Layer, and a Local LLM Server, as illustrated in
Algorithm 1 and Fig. 1.

This separation enforces controlled data flow. At the Ap-
plication Layer, a Flutter-based chat interface captures user

Algorithm 1 Flutter—Ollama Design and Integration
1: Define Flutter Application Layer

2: Create Chat User Interface (UI)

3: Example: Text input box and send button

4: Create State Manager

5: Example: Handles states {idle, loading, streaming,
done)

6 Create Chat Controller

7: Example: Receives user message from Ul

8: Define Business Logic Layer

9: Create Chat Use Case

10 Example: Rule — “Send prompt and receive Al
reply”

11: Ensure UI does not communicate directly with Al
server

12: Define Data Access Layer

13: Create Chat Repository

14: Example: Bridges application logic and data
source

15: Create Ollama Data Source

16: Example: Prepares HTTP request for local LLM

17: Define Local LLM Server (Ollama)
18: Expose API endpoint

19: Example: http://localhost: 11434/api/generate

20: Load selected LLM model

21: Example: llama3

22: Enable streaming text response

23: Define Integration Flow

24: UI sends user text to Controller

25: Example: “Hello”

26: Controller calls Chat Use Case

27: Use Case requests response from Repository

28: Repository forwards request to Ollama Data Source

29: Data Source sends HTTP request to Ollama API

30: Ollama streams generated text back

31: Example: “Hi”, then “Hi there”

32: Response flows back through Repository and Use
Case

33: State Manager updates Ul with streaming text

34: Enforce Design Constraints

35: All Al processing runs locally

36: No user data is sent to cloud servers

37: Components communicate only through defined layers

38: End System Design




Design and Integration of Flutter with Local LLM (Ollama)

Chat UI

Ollama API

User (Flutter) ‘ Chat Controller ’ ‘ Chat Use Case ‘ ‘ Chat Repository ‘ ‘ Ollama Data Source ‘ (Local LLM)
Type message : | i
Example: "Hello" " ! !

Send user message ;
: Request Al response >
‘ Forward request
Prepare HTTP request >

POST /api/generate

' _ Update chat state |

Display Al reply | |
_ Example: "Hi there" | ‘

<

(model, prompt)

Stream text chunk |
< Example: "Hi"

Stream text chunk |
_ Example: " there"

Return streamed response !

A

Pass response

Chat Ul ‘ Chat Controller ‘

‘ Chat Use Case ‘ ‘ Chat Repository ‘

‘ Ollama Data Source ‘ Ollama API

User ‘

(Flutter)

(Local LLM)

Fig. 1. Sequence Diagram of the Design

input and displays streaming responses. State management
governs interaction states such as idle, loading, streaming,
and completion, ensuring responsive user experience. The Ul
communicates exclusively with a Chat Controller, eliminating
any direct interaction with the AI backend.

The Business Logic Layer encapsulates domain rules
through a Chat Use Case, which defines the prompt-response
workflow. This abstraction ensures that application logic re-
mains independent of the underlying Al implementation, im-
proving modularity and testability.

The Data Access Layer serves as a secure bridge be-
tween application logic and the AI engine. A Chat Repos-
itory forwards requests to an Ollama [4] [5] Data Source,
which constructs HTTP requests targeting a local Ollama API
endpoint. The Local LLM Server hosts the selected model
(e.g., LLaMA-based variants) and streams generated tokens
incrementally back to the application.

III. CONCLUSION AND FUTURE WORK

This paper presented a privacy-preserving design steps for
integrating local Large Language Models into Flutter appli-
cations using Ollama. By enforcing layered separation and
executing all Al processing on-device, the proposed system
eliminates cloud dependency, enhances user privacy, and en-
ables offline intelligent interactions. Future work will focus

on implementing the design steps proposed here to achieve
the first prototype.

IV. ACKNOWLEDGEMENT

This work was partly supported by Innovative Human Resource Development for
Local Intellectualization program through the IITP grant funded by the Korea gov-
ernment(MSIT) (IITP-2025-RS-2020-11201612, 33%) and by Priority Research Centers
Program through the NRF funded by the MEST(2018R1A6A1A03024003, 33%) and
by the MSIT, Korea, under the ITRC support program(IITP-2025-RS-2024-00438430,
34%).

REFERENCES

[1]1 Y. Zheng, Y. Chen, B. Qian, X. Shi, Y. Shu, and J. Chen, “A review on
edge large language models: Design, execution, and applications,” ACM
Computing Surveys, vol. 57, no. 8, pp. 1-35, 2025.

B. Yan, K. Li, M. Xu, Y. Dong, Y. Zhang, Z. Ren, and
X. Cheng, “On protecting the data privacy of large language
models (Ilms) and Ilm agents: A literature review,” High-Confidence
Computing, vol. 5, no. 2, p. 100300, 2025. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2667295225000042

V. Udandarao and N. Misra, “Democratizing ai development: Local 1lm
deployment for india’s developer ecosystem in the era of tokenized
apis,” 2025. [Online]. Available: https://arxiv.org/abs/2508.16684

J. Gohil, H. L.Shifare, and M. Shukla, “Developing a user-friendly con-
versational ai assistant for university using ollama and llama3,” in 2025
International Conference on Data Science, Agents Artificial Intelligence
(ICDSAAI), 2025, pp. 1-5.

M. A.J, M. A. VR, M. K, and M. P. R, “Redact: Pii redaction and privacy
protection with ollama integration,” in 2025 8th International Conference
on Computing Methodologies and Communication (ICCMC), 2025, pp.
577-583.

(2]

(3]

(4]

(5]



