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Abstract

This paper proposes a network energy-saving method that leverages advanced sleep modes (ASMs) in conjunction with context-aware
cellular traffic prediction. Cellular traffic is predicted using a convolutional long short-term memory network with cross-domain
datasets to capture complex spatiotemporal patterns. Thereafter, the optimal ASM parameters are selected by exploiting the predicted
traffic and applied to a base station sleeping strategy. Simulation results demonstrate the effectiveness of the proposed method toward
sustainable radio access network operation.
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In fifth-generation (5G) networks, as cellular traffic demand
continues to grow and networks become increasingly dense,
energy-saving under quality of service (QoS) constraints is
essential for energy-efficient radio access network (RAN)
operation [1]]. Prior work [2] analyzed the efficacy of lever-
aging advanced sleep modes (ASMs) to reduce base station \_ J \_ J
(BS) energy consumption. This paper proposes an ASM- l l
based energy-saving method driven by context-aware cellular [ o SR, J [ Lightweight CNN J [Line,,”eed,o,w,,,dmm,kj
traffic prediction to enable adaptive operation that accounts for | |
spatiotemporal dependencies. Simulation results compare the D
proposed method with the Always On baseline to quantify the
energy-saving gain.
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Fig. 1. A framework for the context-aware cellular traffic prediction.
II. SYSTEM MODEL
TABLE I
Spatiotemporal traffic is represented on an H x W grid, BS POWER MODEL
where the traffic snapshot at time ¢ is denoted by D, € RH#*W. Additional
. . . N . Power state Relative power . Transition time
The traffic is predicted from three inputs, including a se- transition energy
. . . Deep sleep 33 1000 50 ms
quence of historical snapshots {D;_1,...,D;_,} capturing Light slecp <0 90 6 ms
spatiotemporal patterns, static context features modeling exter- Micro sleep 98 0 0
Active downlink 145+ 135 % s N/A N/A

nal factors affecting traffic demand, and a vector of temporal
characteristics encoding periodic patterns. The historical snap-
shots are processed by a convolutional long short-term mem-
ory (ConvLSTM) module to jointly learn temporal dynamics
and spatial correlations, while the context features are encoded
by a lightweight convolutional neural network (CNN) and
the temporal characteristics are embedded by a feedforward
network. The resulting feature maps are concatenated and
passed through a densely connected convolutional block to
yield the predicted traffic D, over the entire grid. The overall
architecture of the context-aware traffic prediction is illustrated
in Fig.

The BS power consumption is characterized using the
3GPP energy model together with [3] for a more realistic
parameterization. The 3GPP energy model provides BS power
consumption for ASMs comprising micro sleep, light sleep,
and deep sleep, as well as additional transition energy and

transition time associated with activating each sleep mode. In
particular, the measurement-driven and analytically tractable
energy model in [3[] to reflect the power consumption of
practical 5G active antenna units. The reference configuration
for the BS power model is considered as Set I FRI, and the
corresponding power model used in this paper is summarized
in Table [l The relative power values are dimensionless and
normalized to the deep sleep power, the additional transition
energy is reported for 1ms reference period, and s € [0, 1]
denotes the physical resource block (PRB) utilization ratio.

III. PROPOSED ENERGY SAVING METHOD

Given a target BS load level quantified by the PRB uti-
lization ratio, the proposed method determines the ASM
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Fig. 2. QoS score of ASM configuration tuples under different load levels.

configuration via an offline exhaustive search over a finite
candidate set of cell discontinuous transmission (cell DTX)
parameters. The search space is defined by the cycle du-
ration T € {20,40, 80,160, 320,640} ms, the duty cycle
0 € {0.1,0.25,0.5,0.75,1}, and the sleep mode m €
{micro, light, deep}. For each tuple (T, 5, m), the power con-
sumption is computed using the power model in Table | while
satisfying mode transition feasibility constraints, which require
the OFF duration to be long enough to enter the selected
sleep mode. To achieve energy saving subject to a QoS
constraint, a latency-based QoS score is employed to enforce
the average latency threshold of 50 ms. In addition, the QoS
score accounts for transmission reliability via the successful
transmission ratio. As shown in Fig. [2] only tuples satisfying
the QoS constraint are retained as feasible candidates in the
exhaustive search. Among all feasible tuples, the optimal ASM
parameters are selected to minimize the average BS power,
yielding the resulting load-to-ASM lookup table, which is later
applied online using predicted traffic.

The predicted traffic D, € REXW g given as next-step
traffic volume over all grids, whereas the lookup table is
indexed by PRB utilization ratio. Thus, the predicted traffic
is converted to a normalized load indicator by applying per-
grid min—max normalization

Dy (h, w) — D (h, w)
Dmax(h7 ’UJ) - Dmin (h; w) ’

where Dyin(h, w) and Dyyax(h, w) denote the minimum and
maximum traffic volumes observed at grid (h, w). The normal-
ized load S; € [0, 1]7*W is then mapped to a PRB utilization
estimate §;(h, w) € [0, 1] via the identity mapping, after which
the ASM parameters are obtained by indexing the lookup table
with 8;(h, w).

St(ha

w) = V(h,w) (1)

IV. SIMULATION RESULTS

For the traffic prediction, the Milan dataset [4], where the
city is partitioned into H x W = 100 x 100 grids and traffic
is collected over 62 days. The first seven weeks are used for
training and the last week for testing, with a sliding-window
input of length p = 3. The model is trained using Adam with
a batch size of 32 for 300 epochs, starting from a learning
rate of 0.01 and applying step-down scheduling at 50% and
75% of the total epochs. To evaluate the energy-saving gain
under protocol dynamics, slot-level sleeping is implemented
on a 5G system-level simulator. Traffic is generated by a user
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Fig. 3. ASM decisions for the grid (50,60), Milan’s Duomo, and the
resulting normalized BS power consumption.

datagram protocol client by sweeping the packet inter-arrival
time to match the desired PRB utilization.

Fig. [3] shows the ASM decisions for a representative grid
during the test period, where the selected parameters vary
over time according to the predicted PRB utilization. Low-
load periods enable lower duty cycles and deeper sleep states,
whereas high-load periods lead to selecting Always On to
satisfy the QoS constraint. For the system-level evaluation,
the proposed method is applied to the central 20 x 20 grids,
and the energy-saving gain is computed compared with the
Always On baseline, yielding an average energy-saving gain
of 31.4%.

V. CONCLUSION

This paper proposed an energy-saving method that lever-
ages ASMs with context-aware cellular traffic prediction.
The proposed method predicts next-step traffic over spatial
grids, maps the predicted traffic volume to a PRB utilization
estimate, and indexes a load-to-ASM lookup table obtained
via exhaustive search to select ASM parameters subject to a
latency-based QoS constraint. Simulation results demonstrate
that the proposed method achieves a notable energy-saving
gain while satisfying the QoS constraint, highlighting its
potential to support more sustainable RAN operation. Future
work includes developing an open RAN-compliant approach
using the RAN intelligent controller for near-real-time traffic
prediction and ASM control.
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