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요 약

자율 주행차량은 신뢰성·에너지 효율·고속 교통을 위해 정밀한 센서 데이터에 의존하지만, 센서 이상은신뢰성을저하시켜 에너지 소비를 증가시킨다.
본 논문은 최적 RSU 전송 정책과 오류 없는 통신, 낮은 AoI를 통한 정보 최신성 유지, 그리고 균등한 RSU 활용을 학습하는 CommNet 기반 심층
강화학습(Deep Reinforcement Learning, DRL) 프레임워크를 제안하며, 이는 부분 관측의 자율 주행 차량 플래툰과같은다중에이전트 환경에 적합하
다. 독립적 다중 에이전트 강화학습(Independent Multi-Agent Reinforcement Learning, Independent MARL), 심층 Q-네트워크(Deep Q-Network,
DQN), 탐욕 정책(greedy policy)과의 비교 실험에서 제안 기법은 0% 오류 전송, 최대 63.2%의 AoI 감소, 그리고 가장 효율적인 통신 비용(0.034%)
를 달성하여, 안전한 협력 제어와 신뢰성, 정보 최신성, 에너지 효율 향상을 입증한다.

Ⅰ. 서 론

자율 주행 기술의 발전으로 빠르고 신뢰성 있는 차량-인프라

(vehicle-to-infrastructure, V2I) 통신에 대한 수요가 증가하고 있다. 자율

주행 차량(Autonomous Vehicles, AVs)에서 노변 장치(Roadside units,

RSUs)로 전송되는 오류 없는 실시간 데이터는 중복 전송과 에너지 소비

를 줄이고, 정확한 상황 인식과 신속한 이상 탐지를 가능하게 한다 [1].

밀집 교통 환경에서 신뢰성 있는 RSU 통신을 위해서는 데이터 신뢰성,

정보 신선도(Age of Information, AoI), 그리고 균등한 RSU 활용이 필수

적인 성능 지표이다. 오류 없는 전송은 중복을 감소시키고 정확도를 향상

시키며, AoI는 시의적절한 제어결정을지원한다. 또한 RSU 부하의 균형

은 병목과 재전송을 완화하여 에너지 효율을 향상시킨다 [2].

그러나 다수의 차량을 대상으로 신뢰성과 정보 신선도를 동시에 만족하

는 RSU 통신은 여전히 도전적인 문제로 남아 있으며, 이는 차량 간 간격

이 짧고 실시간 정보 공유에 의존하는 플래툰 환경에서 더욱 두드러진다.

RSU는 안전한 차량협조와 도로수용량 및에너지효율향상에기여하지

만, 기존 하드웨어·알고리즘·AI 기반 접근법은 높은 비용, 모델링 복잡성,

그리고 협력 인지 능력의 한계를 가진다.

이러한 한계를 극복하기 위해 본 논문은 CommNet 기반 DRL 프레임워

크를 제안한다 (그림1). 공유된 잠재 통신 표현을 통해 협력적 정책 최적

화를가능하게하고센서잡음을완화함으로써, 통신 신뢰성, 정보 신선도,

그리고 에너지 효율성을 플래툰 환경에서 효과적으로 향상시킨다 [3].

II. 시스템 모델

본 연구에서는 각 차량의 정보 신선도를 AoI로 모델링한다. 시간 슬롯에서 차량 의 AoI를  로 정의하며, 전송 실패 또는 RSU 미선
택시 AoI는        로증가하며, 차량 이직접전
송하거나 플래툰 리더에게 위임해 RSU 로 전송에 성공한 경우     으로 초기화된다. 네트워크는 각 방향 3.5m 폭의 3차선
을 갖는 길이 1000m 순환 도로에 차량 집합    과 RSU

집합    가 배치된 구조로 가정한다. 차량들은 고정 크
기의 플래툰을 형성하며, 선두 차량은 리더로서 멤버 차량의 데이터를 집

계해 RSU와 통신한다. 각 차량은 매 시간 슬롯마다 전송 여부를 독립적

으로 결정하고, 플래툰 내 차량 간 통신(Vehicle-to-Vehicle, V2V)은 신

뢰적으로 이루어진다고 가정하며, RSU로의 전송 시 에너지가 소모된다.

Ⅲ. 제안 알고리즘

본 연구에서는 CommNet 기반 DRL 프레임워크를 채택한다. 각 차량은

지역관측정보를잠재표현으로인코딩하고, 공유된통신계층을통해특

징 정보를 교환한 후, 전송하지 않는 선택지를 포함하는 RSU 선택 행동

확률 벡터를 생성한다. 통신 가능 범위 250m를 초과하는 RSU 선택지는

행동 선택 이전에 마스킹되며, 크리틱은 공동 관측 정보를 기반으로

CTDE 구조에서 학습된다.

시간 에서 중앙 집중크리틱은 차량의정보 신선도, 차량과 RSU 간 거
리, RSU의 수용량상태, 센서 오류상태, 그리고 플래툰 리더정보를포함

그림 1 차량플래투닝시나리오를위해 제안된 CommNet 기반 협력적
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하는전역시스템상태를입력으로사용한다. 각차량은다음과같이시간

슬롯당 최대 하나의 RSU를 선택한다. 또한 플래툰 리더가 전송을 수행하

는 경우, 위임이 적용되어 멤버 차량들의 전송은 리더의 행동으로 통합된

다.보상 함수는개인적요소와협력적요소로구성된다. 개인적 요소는 센

서 오류 데이터의 직접 전송, 거리 기반 통신 비용, 그리고 거리로 인한

전송 손실을 반영하여 불필요하거나 비효율적인 전송을 억제한다. 반면,

협력적 요소는 RSU 활용의 균형과정보신선도 향상을고려하여, 플래툰

전체 관점에서 효율적이고 시의적절한 데이터 전송을 유도한다. 보상 항

은 각 요소의 중요도에 따라 가중치가 부여되어 최종 보상에 반영된다.

Ⅳ. 성능 평가

A. 실험 설정

제안된 CommNet 기반 DRL 프레임워크의 성능을 평가하기 위해 세 가

지 베이스라인을 고려한다. Independent MARL은 CTDE 프레임워크 하

에서 에이전트 간 통신 없이 각 AV가 지역 정보만을 이용해 독립적으로

의사결정을수행한다. DQN은 각 AV가 지역 관측값을이산적전송행동

으로 매핑하는 독립적으로 학습된 DQN 액터를 실행하며, 유효하지 않은

행동은 Q값 최대화 이전에 마스킹되고 에이전트 간 통신은 사용하지 않

는다. Greedy에서는 시간마다 각 AV가 가장 인접한 RSU를 선택한다.

B. 평가 결과

그림2는 CommNet 기반 DRL이 가장 높고 안정적인 보상 수렴을 달성

함을 보여준다. 이는 공유 통신을 통해 오류 전송을 효과적으로 억제하고

균등한 RSU 선택을 유도하기 때문이다. 반면, DQN은 분산형 Q-러닝의

비정상성 문제로 인해 뚜렷한 진동과 제한적인 수렴 성능을 보인다.

Independent MARL은 에이전트간통신부재로협력적행동과리더위임

전략의 형성이 어렵고, 그 결과 비체계적인 전송 결정, RSU 활용 불균형,

AoI 증가로 인해 보상 향상이 제한된다.

표1은각 알고리즘의 성능을비교한결과를 요약한다. Greedy는매 단계

전송과리더위임을통해직접오류전송은회피하지만, 차량이인접 RSU

에 집중되어 혼잡이 발생하며, 이로 인해 전송 성공률 저하, AoI 증가, 그

리고 RSU 분포엔트로피의 급격한감소가나타난다. Independent MARL

은 에이전트 간 통신 부재로 협력적 RSU 선택이 어려워 전송 불균형과

높은 AoI가 지속되며, 직접 오류전송 또한완전히 제거하지못한다. 통신

없이 독립적으로학습된 DQN은 비교적 높은 RSU 분포엔트로피와 전송

률을 달성하지만, 협력 부재로 인해 행동이 불안정해지고 직접 오류 전송

이빈번히발생하여 RSU 활용효율과 AoI 측면에서한계를보인다. 반면,

CommNet 기반 DRL은 결함 데이터를플래툰리더에게 일관되게 위임함

으로써 직접 오류 전송을 제거하고, 균등한 RSU 활용 하에서 가장 낮은

통신 비용과 최소 평균 AoI를 달성했다.

Ⅴ. 결론

본 연구는 차량 네트워크 환경에서 오류 없는 전송, 향상된정보 신선도,

그리고 균등한 RSU 활용을달성하는 CommNet 기반 DRL 프레임워크를

제안한다. 공유된 잠재 통신 표현을 통해 안정적인 협력 정책을 학습하고

오류 전송을 완전히 제거하였으며, 실험 결과 전송률 대비 가장 효율적인

통신 비용과 모든 베이스라인 중 최소 AoI를 달성하였다. 이러한 결과는

통신 기반 협조 제어가 신뢰성과 에너지 효율을 갖춘 플래투닝에 효과적

임을 입증하며, 향후 연구에서는 동적 플래툰 구성, 이질적 센서, 그리고

대규모 교통 환경으로의 확장을 고려할 수 있다.
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알고리즘
RSU 분포

엔트로피

통신

비용

평균AoI

(time

step)

전송률

(%)

직접오류

전송비율

(%)

위임오류

전송비율

(%)
CommNet

based DRL
2.005 0.034 0.15 18.87 0.000 0.314

Independent

MARL
0.768 0.022 73.11 14.46 1.199 0.000

DQN 2.278 0.034 0.41 21.39 3.036 0.317
Greedy 0.000 0.041 48.20 13.33 0.000 0.222

표1 평가 대상 알고리즘 간 성능 비교

그림2 에피소드 별 보상 수렴 비교


