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요 약

최근 기후변화로 인한 극단적 기상 현상 증가는 시설원예 환경에서도 작물 수분 관리의 어려움을 가중시키고 있다. 기존의 관수 방식은
환경 변화에 따른 작물의 실제 수분 상태를 충분히 반영하지 못해 수분 스트레스 발생 문제가 지속적으로 지적되고 있는 실정이다. 본 연구에서는
온실 환경에서수집된복합센서기반시계열데이터를활용하여작물수분스트레스예측알고리즘을비교·분석하였다. 분류 문제에는 Random Forest,
XGBoost, LSTM을, 회귀 문제에는 LightGBM과 DNN을 적용하였다. 실험 결과, LSTM 모델은 가장 높은 분류 성능을 보였으며, 트리 기반 모델은
낮은 연산비용으로안정적인성능을 나타냈다. 본 연구는예측 정확도와 실시간적용성을함께 고려한 작물수분 스트레스 예측알고리즘선택 기준을
제시한다.

Ⅰ. 서 론

최근 기후변화의 여파로 이상고온 및 국지성 폭우 등 극단적 기상 현상이

빈번하게 발생하고 있으며, 이는 농업 생산 전반에 걸쳐 다양한 피해를

유발하고 있다.[1] 이러한 현상은 노지뿐만 아니라 시설원예 환경에서

도 피해사례가나타나며, 외부기상변화에따른온실내부환경변동성증

가로 인해 작물 생육 관리가 더욱 어려워지고 있는 실정이다.[2]

이로인해기존의경험기반또는고정된기준에의존한관수방식은환경

변화에적절히대응하지못하는한계를드러내고있으며,[3] 그결과비효율적

인관수로인한물자원 낭비와 작물 수분스트레스 발생문제가지속적으

로지적되고 있다. 작물 수분 스트레스는 토양 수분 부족 또는 수분 흡수

불균형으로 인해 작물의 생리적 기능이 저하되는 상태로, 생육 지연 및

수량 감소로 이어질 수 있다.[4]

기존의 관수 시스템은 토양 수분 값이나 고정된 스케줄에 의존하는

경우가 많아, 환경 조건 변화에 따른 작물의 실제 수분 상태를 충분히

반영하지 못하는 한계를 지닌다.[5]

이에 본 연구에서는 열화상 영상과 온·습도, 토양 수분, 광량, 이산화탄소

농도등다양한온실환경요소와복합센서기반시계열데이터를활용하여

작물 수분 스트레스를예측하는알고리즘을분석하고자한다. 머신러닝 및

딥러닝 기반의 다양한 예측 모델을 비교·평가하고, 예측 성능과 더불어

연산효율성과실시간적용가능성을함께고려함으로써실제스마트팜환경에

적합한수분스트레스예측 모델을 제시하는 것을 본 연구의 목표로 한다.

본 논문의 순서는 다음과 같다. 2장에서 실험 환경 및 연구 방법에 대해

설명하고, 도출된분석결과를설명한다. 마지막으로3장에서결론을서술한다.

Ⅱ. 본론

본 장에서는 온실 환경에서 수집된 복합 센서 기반 데이터셋을 구성하고,

이를 바탕으로 작물 수분 스트레스 예측을 위한 다양한 알고리즘을

적용하여 성능을 분석하였다.

Ⅱ.1 실험 환경 구성

본연구에서는실제온실환경을반영한테스트를진행하기위해AI Hub

에서제공하는농업환경데이터셋을활용하였다. 해당데이터는온실재배환경에서

수집된실측데이터로, 작물생육에영향을미치는다양한환경변수를포함한다.

데이터는온실 내부에 설치된 복합 센서를 통해일정 주기로 수집되었으며,

온도, 습도, 토양수분, 광량, 이산화탄소농도등주요환경변수를포함한다.

수집된데이터는시계열형태로두달간수집하였으며, 구성은다음표와같다.

측정항목 단위 설명 수집 주기
온도 °C 온실 내부 온도

5분

습도 % 온실 내부 습도
토양수분함량 % 작물근권부토양수분
광량 lux 생육 유효 광량

CO2 농도 ppm 광합성 환경 변수
엽온 °C 작물 잎 표면 온도

측정시각 Timestamp 시계열데이터정렬기준

표 1 데이터 수집 조건 구성

수집된데이터는일부결측치와이상치를포함하고있어, 분석에앞서전처리

과정을 수행하였다. 전처리과정에서는결측 데이터 제거 및 보정, 이상치

필터링, 변수 간 스케일 차이를 고려한 정규화를 적용하였다. 또한 예측

모델 학습을 위해 데이터를 시계열 분석에 적합한 형태로 구성하였다.

단계 전처리 항목 설명
1 결측치 처리 결측 데이터 제거
2 이상치 제거 물리적비현실적값및급격한변동데이터제거
3 시간 동기화 수집주기5분단위리샘플링
4 보간 처리 결측 구간 보완
5 정규화 각 변수 값 0–1 범위 변환
6 시계열 구성 연속된시간구간기준시계열데이터셋구성
7 라벨링 수분스트레스상태Normal,Mild,Severe단계구분

표 2 데이터 전처리



Ⅱ.2 예측 알고리즘 선정 및 학습

작물 수분 스트레스 예측을 위해 머신러닝 및 딥러닝 기반의 다양한

알고리즘을 적용하였다. 예측 문제는 수분 스트레스 상태를 단계별로

판단하는분류문제와연속적인수분스트레스지표를예측하는회귀문제로

구분하였다. 분류 모델로는 Random Forest, XGBoost, LSTM을 적용하

였으며, 회귀분석에는 LightGBM과 DNN 모델을사용하였다. 모든모델은

동일한 데이터셋과 전처리된 시계열 데이터를 기반으로 학습 및 검증을

수행하여, 알고리즘 간 예측 성능을 객관적으로 비교하였다.

구분 알고리즘 출력
분류 Random Forest Normal / Mild / Severe
분류 XGBoost Normal / Mild / Severe
분류 LSTM Normal / Mild / Severe
회귀 LightGBM 수분 스트레스 지표
회귀 DNN 수분 스트레스 지표

표 3 예측 알고리즘 구성

Ⅱ.3 실험 결과 및 분석

분류모델의성능 평가는 Accuracy, Precision, Recall, F1-score 지표를

사용하였으며, 회귀 모델의 경우 RMSE와MAE를 활용하여예측 오차를

정량적으로 평가하였다. 이를 통해 알고리즘 간 예측 성능을 객관적으로

비교하였다.

그림 1 분류 모델 성능 비교 결과

그림 2 회귀 모델 오차 비교 결과

실험 결과, 트리 기반 모델인 Random Forest와 XGBoost는 각각

Accuracy 0.84와 0.86 수준의 비교적 안정적인 분류 성능을 보였다.

반면 시계열 특성을 반영한 LSTM 모델은 Accuracy 0.88, F1-score

0.86으로 가장 우수한 예측 성능을 나타냈으며, 특히 환경 변화가 급격한

구간에서 분류 정확도가 상대적으로 향상 되는 경향을 보였다.

회귀 분석 결과에서도 LightGBM과 DNN 모델은 수분 스트레스 지표를

효과적으로 예측하였으며, DNN 모델은 RMSE 0.087, MAE 0.068로

LightGBM(RMSE 0.093, MAE 0.071) 대비 다소 낮은 예측 오차를

나타냈다. 다만 두 모델 간 오차 차이는 제한적인 수준으로 나타났다.

딥러닝 기반 모델은 상대적으로 높은 예측 성능을 보였으나 연산 비용이

증가하는 경향을 보였으며, 반면 트리 기반 모델은 비교적 낮은 연산

비용으로 안정적인 예측 성능을 유지하였다. 이를 통해 예측 정확도와

실시간 적용성을 동시에 고려한 모델 선택의 필요성을 확인하였다.

Ⅲ. 결론

본 논문에서는 온실 환경의 복합 센서 기반 시계열 데이터를 활용하여

작물 수분 스트레스를 예측하고, 다양한 머신러닝 및 딥러닝 알고리즘의

성능을비교·분석하였으며, 실제온실환경을반영한데이터셋을기반으로

분류및회귀문제를구성하고, 예측정확도와실용성측면에서알고리즘별

특성을 분석하였다.

실험 결과, Random Forest와 XGBoost는 낮은 연산 비용으로 안정적인

예측성능을보였으며, 시계열정보를연속적으로학습하는 LSTM 모델은

분류 정확도와 F1-score 측면에서 가장 우수한 성능을 나타냈다. 회귀

분석에서는 DNN 모델이 LightGBM대비다소낮은예측오차를보였으나,

모델 간 성능 차이는 제한적인 수준으로 확인되었다.

종합적으로, 정확도가 중요한 분석 환경에서는 LSTM 모델이 적합하며,

실시간성과시스템안정성이 요구되는현장환경에서는트리 기반모델이

실용적인 대안이 될 수 있다. 본 연구는 시계열 데이터 활용 방식에 따른

예측성능과실용성의차이를분석하여, 작물수분스트레스예측알고리즘

선택에 대한 기준을 제시한다는 점에서 의의가 있다.

향후 연구에서는 작물 및 재배 환경을 확대하여 예측 모델의 일반화

성능을 검증하려 한다. 또한 관수 의사결정시스템과의 연계를 통해 예측

결과의실제현장적용가능성을실증적으로평가하는연구를진행할예정이다.
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