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. Prior Proposed
Param. | Exposition
Value Value

L The no. of layers 4 6

Ly, The no. of hidden layers | 2 4

D, The no. of hidden nodes | 30 296

D, The no. of input nodes | 150 256

Ng Training epochs 10 50

Ny | Batch Size 32 128

L, The no. of output layers | 1 1
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