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요 약

본 논문은 비 지상 네트워크와 지상 네트워크가 통합된 환경에서 네트워크 성능을 향상하는 기법을 제안한다. 비지상 네트워크와 지상 네트워크
사이의 uplink 환경에서 제한 된 대역폭 내에서 간섭을 최소화 하기 위해서 지상 네트워크와 비 지상 네트워크에 할당할 대역폭을 결정하는 방안을
제시한다. 본 연구는 3rd generation partner ship project에서 정의한 시나리오에서 비지상 네트워크의 uplink와 지상 네트워크의 uplink를 대상으로
성능을 분석했다. 제안하는 기법은 기존 자원분배 방식과의 성능 분석 결과, 더 높은 성능을 달성하였다.

Ⅰ. 서 론

이동통신기술의 발전과서비스수요의증가에 따라끊임없는연결을위

해 비지상 네트워크 (non-terrestrial network, NTN)의 중요도가 증가하

고 있다. NTN은 위성 등을 활용하여 재난 환경, 해상 및 도서 지역과 같

은 지상 네트워크 (terrestrial network, TN)의 접근이 어려운지역에서도

안정적인 통신 서비스를 제공할 수 있다. 이러한 특성 덕분에 NTN은 기

존 TN과의 융합을 통해 글로벌 커버리지를 확장하는 데 중요한 역할을

하고있다. 하지만 TN과 NTN이 동일또는인접주파수 대역을공유하는

공존환경에서 uplink (UL)는 상호 간섭이 발생하여 통신 성능 저하를 초

래할 수 있기에, 이를 완화하기 위한 효율적인 관리 방안이 필요하다. 이

에 따라 국제 통신 표준화 기구인 3rd Generation Partnership Project

(3GPP)에서는 TN-NTN 공존상황에대한 6가지 시나리오를 정의하였다

[1]. 본 연구에서는 이들 시나리오 중에서도 TN UL과 NTN UL 간 간섭

이크게나타나는공존상황에초점을맞추어, 공존 환경에서 통신 성능을

개선하기 위한 간섭 인지 자원할당 기법을 제안한다.

Ⅱ. 시스템 모델

본논문의시나리오는 TN UL 과 NTN UL이 공존하는상황인시나리오

를 다룬다. 그림 1과 같이 TN user equipment (UE)는 TN next

generation node B (gNB)로 신호를 전송하고, NTN UE는 저궤도 위성

(low Earth orbit, LEO)으로 신호를 전송한다. 시스템모델에서주요 성능

지표는 signal to interference plus noise ratio (SINR)이고, 이는 시스템

의신호 품질을평가하는핵심기준이다. SINR 값은 현재 UE가 전송하는

신호의 전력에서 총 간섭 전력 ()와 잡음 전력 ()의 합을 나눈다. 이

때 TN UL에 작용하는 총 간섭 전력은 NTN UL에서 유입되는 간섭신호

와 원하는신호가 아닌 다른 TN UL에서 유입되는간섭신호의 합으로계

산한다. NTN UL에 작용하는총 간섭전력도동일한방법으로 TN UL에

서 유입되는 간섭신호와 원하는 신호가 아닌 다른 NTN UL에서 유입되

는 간섭신호의 합으로 수식 (1)과 같이 SINR을 계산한다.

Network  
NTN 16.757 dB 20.173 dB
TN 19.039 dB 22.225 dB

표 1. ACIR 모델

 

 (1)

신호전력을계산하는방법은 수식 (2)와 같이, 는송신 전력 는송

신 안테나 이득 은 수신 안테나 이득, 은 path loss를 의미한다.

  

  
(2)

간섭신호전력을계산하는 방법은신호전력을구하는 방법에서인접채널

간섭비율 (adjacent channel interference ratio, ACIR)과 차를구한다. 이

때 ACIR 값은 표 1을 참조한다.

Ⅲ. 강화학습 시스템 모델

max × (3)

그림 1 NTN TN 네트워크 공존 상황 시스템 모델.



그림 2. 빔별 정규화 보상 학습 수렴도.

Parameter Value
Carrier frequency S-Band

Bandwidth 20MHz
Number of TN cells 57

Number of NTN beams 7
User distribution TN,

NTN 10 per cell, beam

표 2. 시뮬레이션 파라미터

TN과 NTN의 공존을위한최적화 문제는식 (3)과 같이 정의한다. 여기

서 커버리지 확률은 수신신호대 간섭 잡음비가 임계값을 초과하는 확률

을 의미한다. 본 논문에서는 정의한 최적화 문제를 해결하기 위해 계층적

강화학습 기법을 활용한다. 계층적 강화학습 기법을 활용한다. 계층적 강

화학습은공존 환경에서의자원관리의사결정을상위 단계의정책결정과

하위 단계의 세부 자원할당으로 분리하여 학습하는 방식이다. 강화학습

과정은 마르코프 결정 과정 (Markov decision process, MDP) 기반으로

구성하며, 상위 MDP와 하위 MDP의 상태, 행동, 보상 함수를 다음과 같

이 설계한다.

1) 상위계층

State(상태) :  ≐    으로 정의한다. 구성한 상태는
TN의 대역폭(), NTN의 대역폭()을 포함한다.
Action(행동) : ≐     으로 정의한다. 행동을 선택하
면 그에 맞게 TN과 NTN의 자원할당 비율을 조정한다.

3) Reward(보상) :  ×으로 정의한다. 최

적화문제와 동일한보상을설정하여통신성능을 최대화하는것이목적이

다.

2) 하위계층

State(상태) :  ≐     로 정의한다. 상태는     FRF로 Beam에 할당된 자원 대역폭 번호, 는 현
재 빔 내에 TN 기지국이 있는지 여부를 포함하여 구성한다..

Action(행동) : ≐  으로 정의한다. 행동을 선택하면 빔
에 FRF 번호에 따른 대역폭을 할당한다.

3) Reward(보상) :  으로 정의한다. 빔 내부의 NTN

UE를 최대한 만족 시키기 위한 보상을 설정한다.

본 연구에서는 상위및 하위계층의 의사결정을안정적으로학습하기위

해 DDQN (deep reinforcement learning with double Q-learning) 기반

학습 구조를 적용하였다. 제안한 계층적 자원할당 문제에 대해 DDQN을

활용하여 상위 계층의 자원 분배 정책과 하위 계층의 빔 단위 FRF 기반

할당 정책을 효율적으로 최적화한다.

그림 3. Proposed와 Baseline의 NTN 및 TN 성능 비교.

IV. 시뮬레이션 결과 분석

실험 환경은 표 2의 파라미터를 기반으로 구성하였다. 위성과 지상 기지

국 간 모델은 3GPP 표준을 따라 Urban Macro시나리오로 모델링하였다

[2], [3]. 본 논문에서는 TN-NTN 공존 환경에서 제안 기법(Proposed)과

TN과 NTN에 동일 대역폭을 고정 할당하는 기준 방식(Baseline)을 함께

평가하였다. 그림 2는 빔별 정규화 보상의 학습추이를 나타낸다. 학습 초

기에는 탐색과 환경 변동성으로 인해 보상 값의 분산이 크게 나타나지만,

에피소드가 진행될수록 전반적인 보상 수준이 점진적으로 증가하며 일정

구간 이후 안정적으로 수렴하는 경향을 확인할 수 있다. 그림 3은

Proposed와 Baseline의 성능을 NTN과 TN 관점에서 비교한 결과이다.

제안 기법은 Baseline 대비 NTN과 TN 모두에서 더 높은 성능을 보였으

며, 특히 NTN 측에서 개선 폭이 더 크게 나타났다. 즉, Proposed는 TN

성능을 유지하면서도 NTN 성능을 유의미하게 향상시켜, 공존 환경에서

두 네트워크 간 성능 균형을 보다 효과적으로 달성함을 확인할 수 있다.

Ⅴ. 결론

본 논문에서는 강화학습을 활용해 NTN과 TN 네트워크가 공존하는 상

황에서 계층적 자원할당을 통해서 간섭을 최적화하는 기법을 제안한다.

제안한 기법의 결과로 NTN과 TN 성능 최적화를 달성했으며, 자원 분배

와 빔 당 자원 할당을 통하여 서비스 요구에 맞는 최적 구성을 도출할 수

있음을 확인하였다.
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