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요 약

건설 산업의 자동화 요구에 따라 굴삭기의 자율 작업에 관한 연구가 활발히 수행되고 있으나, 토양 상호작용의 비선형성과 작업 환경
의 비정형성으로 인해 완전 자율화의 실현은 여전히 도전적인 과제로 남아 있다. 본 논문에서는 자율 토공 작업을 위한 핵심 기술을
기구학 및 동역학 기반 제어와 학습 기반 계획의 두 범주로 분류하고, 각 접근법의 연구 동향을 체계적으로 고찰하였다. 기구학 및 동역
학 기반 접근법에서는 볼록 다면체 기반 성능 분석, 다목적 궤적 최적화, 적응 제어 및 다관절 협력 제어 기법 등이 검토되었으며, 학습
기반접근법에서는 모방학습을통한전문가궤적생성과 강화학습을통한자율정책학습기법이분석되었다. 본 고찰을통해각접근법
의 기술적 특성을 분석하고, 향후 연구 방향을 제시하였다.

Ⅰ. 서 론

건설 산업은 숙련 노동력의 감소와 작업 현장의 안전성 확보 요구로 인

해 자동화 기술의 적용이 요구되는 대표적인 분야이다. 특히 토공 작업은

건설 공정의 초기 단계에서 수행되는 핵심 공정으로서 전체 프로젝트의

공기및비용에직접적인영향을미치며, 이에 따라 굴삭기의 자율 작업에

관한 연구가 지속적으로 수행되어 왔다[1,2]. 그러나 토공 작업의 자동화는

제조업로봇이나 자율주행차량과비교하여본질적으로 높은복잡성을수

반한다. 이는 굴착 과정에서 토양과 작업 장치 간에 발생하는 상호작용의

비선형성, 작업 환경의 비정형성, 그리고유압구동 시스템과다관절기구

의 동역학적 결합 효과에 기인한다.

이러한 기술적 난제를 해결하기 위해 두 가지 접근법이 발전되어 왔다.

기구학 및 동역학에 기반한 모델 중심 접근법에서는 뉴턴-오일러 방정식

을 활용한 매니퓰레이터의 동역학 모델 수립, 유압 서보 시스템의 비선형

특성 보상, 다목적 최적화 알고리즘을 통한 궤적 생성, 그리고 적응 제어

및 장벽 함수기반의 구속 조건 만족제어기법등이연구되어 왔다. 이러

한 모델 기반 방법론은 시스템의 물리적거동에 대한 해석적이해를 제공

하며, 제어 성능의 이론적 보장이 가능하다는 장점을 갖는다. 한편, 토양

상호작용의 불확실성을 명시적으로 모델링하지 않고 데이터로부터 학습

하여 적응적 계획 및제어를 구현하고자하는인공지능기반접근법 또한

새로운 최적화 방식으로서 연구되고 있다. 심층 강화학습을 통한 굴착 정

책의 자율 학습, 숙련 작업자의 시연 데이터를 활용한 모방 학습, 그리고

물리 법칙과 데이터 기반 학습을 결합한 물리 정보 기반 머신러닝 등이

이에해당한다. 본 논문에서는자율토공작업을위한기구학적제어와학

습기반계획기술을동등한관점에서검토하고, 각 접근법의 특성과 연구

동향을 체계적으로 고찰한다.

Ⅱ. 기구학 및 동역학 기반 제어

자율토공작업의 실현을위해서는굴삭기작업 장치의운동학적관계와

유압 구동 시스템의 동역학적 특성에 대한 정밀한 이해가 선행되어야 한

다. 이 분야의 연구는 크게 두 방향으로 전개되었다. 첫째는 작업 효율성

과에너지소비를고려한최적궤적의생성이며, 둘째는생성된궤적을실

제 유압 시스템에서 정밀하게 추종하기 위한 제어 기법의 개발이다.

굴착 작업의효율성을극대화하기위한 궤적계획 연구에서는다양한 최

적화기법이 적용되어왔다. 3차원 볼록다면체 기반의굴착성능분석방

법론은 뉴턴-오일러 방정식에 기초하여 버킷 끝단에서 발휘 가능한 굴착

력의 범위를 정량화하고, 유전 알고리즘을 통해 숙련 작업자 대비 향상된

힘 전달 효율을 갖는 최적 궤적을 도출하였다 [3]. 독립 계량 유압 시스템

기반의 통합 프레임워크에서는 작업 시간, 에너지 소비, 저크를동시에최

적화하는다목적함수를수립하고, NSGA-II 알고리즘과 5차 B-스플라인

보간법을 결합하여 부드러운 관절 궤적을 생성하였다[4]. 한편, 토양 유출

저감을 위한 동작 계획 연구에서는 스쿠핑 단계에서 버킷을 본체 방향으

로 당기며 상승시키는 백 모션 전략이 제안되어, 버킷 내 토양의 안식각

유지를 통해 유효 굴착량의 증대를 달성하였다[5]. 대규모 토공 작업을 위

한계층적 계획 프레임워크에서는 Boustrophedon 분할법을통한전역경

로 생성과 베이지안 최적화 기반의 굴착 파라미터 조정을 결합하여, 실증

실험에서 300톤 규모의 토양 처리를 자율적으로 완수하였다[6].

생성된 목표 궤적의 정밀한 추종을 위해서는 유압 시스템의 비선형성과

다관절 기구의 결합 효과를 효과적으로 보상하는 제어 기법이 필수적이

다. 적응형이미지기반비주얼서보제어기법은기구학적루프와동역학

적루프를분리하고, 장벽 함수기반의구속메커니즘을도입하여관절속

도가허용범위 내에서유지되도록규제함으로써특이점 회피와안정성을



동시에확보하였다[7]. 대형 굴삭기의다관절 동기화문제를해결하기위한

협력 제어프레임워크에서는 평균 결합 협력 지표를 도입하여관절 간동

기화 상태를 실시간으로 평가하고, 개선된 입자 군집 최적화 알고리즘을

통해 PID 이득값을 최적화함으로써 동기화 오차를 감소시켰다[8]. 초대형

굴삭기를 대상으로한 경사각-변위매핑기반 제어방법론에서는외부경

사각 센서를 활용하여 실린더 변위를 간접 추정하고, 위치-속도 제어를

적용하여 95톤급 장비에서 117mm 이내의 위치 오차를 달성하였다[9].

Ⅲ. 학습 기반 계획 기법

토양 상호작용의 복잡성과 작업 환경의 불확실성을 데이터로부터 학습

하여 적응적 계획을 수행하고자하는 인공지능기반 접근법은크게 두가

지 방향으로 전개되었다. 첫째는 숙련 작업자의 시연 데이터로부터 작업

패턴을학습하는모방학습기반접근법이며, 둘째는탐색을통해최적정

책을 자율적으로 탐색하는 강화학습 기반 접근법이다.

모방 학습기반 접근법은 숙련된전문가의조작데이터를 활용하여 명시

적 동역학 모델 수립 없이 궤적을 생성하는 것을 목표로 한다. LSTM 기

반의 딥러닝 시스템은 3D 포인트 클라우드 데이터로부터 지형 특징을 추

출하고, 기구학적 제약을 고려한 굴착 영역 및 경유점을 순차적으로 생성

하여숙련 작업자와대등한생산성을달성하면서도 작업결과의일관성을

향상시켰다[10]. 전역변조운동원형모델과모델예측경로적분을결합한

계층적 프레임워크는 SE(3) 공간에서 전문가 시연의 전역적 특징을 확률

적으로 학습하고, 부호 거리 필드 기반의 충돌 비용 함수를 통해 장애물

회피를 실시간으로 수행하였다[11]. 계획과 실행을 분리한 협력 학습 프레

임워크에서는 상위 모듈이 강화학습으로 최적 굴착 위치를 결정하고, 하

위 모듈이어텐션 강화 생성적적대모방학습으로전문가 궤적을생성하

여, 다양한 토양 조건에서 90.8%의 작업 성공률을 달성하였다[12].

강화학습기반 접근법은보상함수의 설계를 통해에이전트가최적 굴착

정책을 자율적으로 학습하도록 유도한다. DDPG 알고리즘 기반의 연속

굴착 계획 시스템은 굴착 효율, 에너지 소비, 작업 시간을 종합적으로 고

려한다목적보상함수를설계하여, 트렌칭작업에서동작간 연속성을유

지하면서 에너지 효율을 향상시켰다[13]. PPO 알고리즘과 전이 학습을 결

합한 적응형 3D 시뮬레이션 프레임워크는 합성 환경에서의 사전 학습과

실제 현장 데이터 기반의 미세 조정을 통해 91.15%의 사이클 타임 예측

정확도를 달성하였다[14]. 한편, 물리 정보 기반 머신러닝 접근법은 뉴턴-

오일러 방정식에 기초한 메커니즘 모델과 데이터 기반 학습을 결합하여,

순수물리모델이나순수데이터기반모델대비굴착저항력추정정밀도

를 현저히 개선하였다[15].

Ⅳ. 결 론

본 논문에서는 자율 토공 작업을 위한 기구학적 제어와 학습 기반 계획

기술및연구동향을고찰하였다. 기구학및동역학기반접근법은시스템

의물리적거동에대한해석적이해를제공하며, 제어 성능의 이론적 보장

이 가능하다는장점을갖는다. 반면, 학습 기반접근법은명시적모델링이

곤란한 토양 상호작용의 불확실성에 대해 데이터로부터 적응적으로 대응

할수있다는강점을보유한다. 물리 정보기반머신러닝이나계층적협력

학습 프레임워크와 같이 모델 기반 지식과 데이터 기반 학습을 융합하는

연구가 높은 성능을 달성한 사례는 이러한 통합적 접근의 유효성을 시사

한다. 향후 연구에서는 시뮬레이션과 실제 현장 간의 격차를 줄이기 위한

전이 학습 기법의 고도화, 다양한 토양 조건에 대한 강건성, 그리고 제한

된 컴퓨팅 환경에도 실시간성을 위한 연산 효율성 개선이 주요 과제이다.
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