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요 약

본 논문은Wi-SUN 네트워크의성능향상을위해 강화학습기법인 Deep Q-Network(DQN)를 활용하여 border router(BR) 배치 최적화 프레임워크
를 설계하고, 통신 세기와 속도를 결합한 보상 함수를 통해 통신 품질을 최적화하는 연구를 다룬다. RPL, CTP, LOAD 등 다양한 라우팅 프로토콜
환경에서 성능을 비교 분석하였으며, 실험 결과 RPL 환경에서 가장 우수한 성능을 달성하여 제안 프레임워크의 효과성을 확인하였다.

Ⅰ. 서 론

현대의스마트 빌딩환경에서빌딩관리 시스템(BMS)은 난방, 환기, 냉

방(HVAC), 조명, 보안, 화재 안전 시스템의효율적인관리를위해분산된

센서와 액추에이터 간의 안정적인 무선 통신을 필요로 한다.

IEEE 802.15.4g 표준 기반의 Wi-SUN(Wireless Smart Utility

Network)은 Sub-GHz 주파수 대역에서 장거리 통신, 저전력 소비, 높은

보안 기능을 제공하여 스마트 빌딩의 핵심 통신 기술로 부상하고 있다.

Wi-SUN은 그림 1과 같이 메쉬 네트워크 토폴로지를 통해 다중 경로 전

송이 가능하며, 모든 센서 노드는 border router(BR)를 통해 백본 네트워

크에 연결된다. [1], [2].

Wi-SUN 네트워크의 성능은 BR 배치와 라우팅 프로토콜에 크게 의존

한다. 본 연구는 Deep Q-Network(DQN) 기반 BR 배치 최적화프레임워

크를 제안하며, routing protocol for low-power and lossy

networks(RPL), collection tree protocol(CTP), load-based

routing(LOAD) 등 다양한라우팅프로토콜 환경에서의성능을비교분석

한다. DQN 알고리즘은 round trip time(RTT)와 received signal

strength indicaotr(RSSI)를 결합한 보상함수를통해 통신품질과 연결성

을 동시에 최적화하는 배치 정책을 학습한다.

Ⅱ. 시스템 모델

Wi-SUN 네트워크는다양한라우팅 프로토콜을지원하며, 본 연구에서

는 RPL, CTP, LOAD의 성능을 비교 분석한다.

RPL은 목적지 지향 비순환 그래프(destination oriented directed

acyclic graph, DODAG)를 구성하여 BR을 루트로하는트리구조를 형성

한다. 각 노드는 objective function(OF)에 따라 선호부모를 선택하며, 본

연구에서는 RSSI와 RTT를 주요메트릭으로활용하여통신품질우선경

로를 선택한다. DODAG 형성 과정은 (1) BR의 DODAG Information

Object(DIO) 브로드캐스트, (2) 이웃 노드의 rank 계산, (3) OF 기반 부모

노드 선택, (4) 상향 트래픽 전송으로 구성된다.

CTP는 ETX 메트릭기반으로패킷손실을 최소화하는 신뢰성 중심 프

로토콜이며, LOAD는 트래픽부하를 고려하여 네트워크 수명을 연장하는

부하 분산 프로토콜이다.

BR 위치는 각라우팅프로토콜의토폴로지 형성과통신품질에결정적

영향을 미치며, 양호한 RSSI 및 낮은 RTT를 제공하는 위치에 배치될 때

네트워크 전체 성능이 향상된다.

Ⅲ. 강화학습 설계

BR 배치 최적화문제는 markov decision process(MDP)로 정식화되며,

상태(State), 행동(Action), 보상(Reward)으로 구성된다.

1) State(상태) :  ∈ {BR, U, J} 으로 정의한다. BR = () 는
현재 BR의 위치좌표를나타내고, U =       
는 네  트워크에 합류하지 못한 노드들의 위
치 좌표를, J = , ... ,         는 네트워크에 합류한 노드들
의 rank와 위치좌표를 나타낸다.

2) Action(행동) :     ∈ { ,  , ... , }로
정의되며, BR의 새로운 배치 위치를 선택한다. 복도 길이 100m를 1m 간

격으로구분하고, 5개층으로구성되어총 500개의가능한배치위치가존

재한다.

3) Reward(보상) :

   if × ×  
로 정의한다. 네트워크가 연결되지 않으면 큰 페널티를 부여하고, 그렇지

않으면 RTT와 RSSI 기반 보상의 가중합으로 계산한다.

그림 1. Wi-SUN 메쉬 네트워크 구조



그림 2. 강화학습 누적 보상 그래프

RTT 기반 보상은 식 (1)과 같이 각 노드에서 BR까지의 전송 시간을

역수 형태로 변환하여 낮은 지연을 선호하도록 설계되었다. RSSI 기반

보상은 식 (2)와 같이 모든 노드의 평균 수신 신호 세기를 반영한다. 각

노드의 전송 시간은 식 (3)에서 Shannon capacity를 기반으로 산출되며는 패킷 크기, 는 채널 대역폭을 의미한다. 가중치 와 는 RTT와
RSSI의 상대적 중요도를 조절하며, 이러한 복합 보상 함수를 통해 DQN

에이전트는 통신 지연과 신호 품질을 동시에 최적화하는 BR 배치를

학습한다. SNR은 식 (4)와 같이송신 전력, 안테나이득, 경로 손실로부터

계산되며, 경로 손실 PL은 식 (5)의 log-distance 모델을 따른다. 식 (6)은

노드와 BR 간의 유클리드 거리를 나타낸다.

     
×   (1)

     
    (2)

 ×  
0 (3)

           (4)

  log   log          (5)

       ×     (6)

Ⅳ. 성능 분석

그림 2는 각 라우팅프로토콜 환경에서 DQN 에이전트의 학습 과정을

나타낸다. 모든 프로토콜에서 약 10,000 timestep 이후 보상이 수렴하는

것을 확인할 수 있으며, 이는 에이전트가 각 프로토콜 특성에 적합한 BR

배치 정책을 성공적으로 학습했음을 의미한다. 제안하는 RPL 기반 방식

이가장높은누적보상(약 1.4)을 달성하였으며, LOAD와 CTP가 그뒤를

따른다. RPL의 우수한성능은 DODAG 구조가 BR 중심의계층적토폴로

지를 형성하여 DQN의 배치 최적화와 높은 시너지를 발휘하기 때문으로

분석된다.

그림 3은 100개의 랜덤 노드 배치 시나리오에서 각 라우팅 프로토콜의

RSSI와 RTT 성능을 box plot으로나타낸다. RSSI 측면에서 RPL이평균

-82.2 dBm으로 가장 우수한 신호 품질을 보였으며, LOAD(-82.8 dBm),

CTP(-83.1 dBm) 순으로 나타났다. RPL의 RSSI 성능이 우수한 이유는

objective function 기반 부모 선택 과정에서 신호 품질이 양호한 경로를

우선적으로 선택하기 때문이다. RTT 측면에서도 RPL이 평균 3.15 ms로

가장 낮은 지연을 달성하였으며, CTP(3.44 ms), LOAD(3.50 ms)는 유사

한 수준의 RTT를 보였다. RPL의 낮은 RTT는 DODAG 구조를통해 BR

그림 3. 라우팅 알고리즘에 따른 성능 분석

표 1. 강화학습 시뮬레이션 파라미터

Parameter Value
Batch size 1024
Buffer size 10240
Learning rate 0.001

Beta 0.0005
Epsilon 0.2
Lambda 0.99

Number of epochs 50000

까지의경로가 사전에최적화되어 있어 패킷 전송 시 추가적인경로 탐색

오버헤드가 발생하지 않기 때문으로 분석된다. 종합적으로, 제안된 DQN

기반 BR 배치최적화프레임워크는 RPL 환경에서 가장 효과적으로 동작

하며, RSSI와 RTT 모두에서 다른 프로토콜 대비 우수한 성능을 달성함

을 확인하였다.

Ⅴ. 결론

본 논문에서는 Wi-SUN 네트워크의 BR 배치 최적화를 위한 DQN 기

반프레임워크를제안하였다. RTT와 RSSI를 결합한 보상 함수를 설계하

여 통신 지연과 신호 품질을 동시에 최적화하는 배치 정책을 학습하였으

며, RPL, CTP, LOAD 환경에서 성능을 비교 분석하였다.

실험 결과, RPL 기반 환경에서 제안 프레임워크가 가장 우수한 성능을

보였으며, 평균 RSSI -82.2 dBm, RTT 3.15 ms를 달성하여 다른 프로토

콜대비신호품질과지연측면에서모두개선된결과를확인하였다. 이는

RPL의 DODAG 구조가 BR 중심 최적화와 높은 시너지를 발휘하기 때문

으로 분석된다.
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