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요 약

ITS(Intelligent Transport Systems) 기반 V2X(Vehicle-to-Everything) 환경에서협력형자율주행을 위해카메라및 인프라
센서 정보의 공유가 요구되지만, 제한된 대역폭과 가변 채널로 인해 지연 및 손실이 발생하여 안전 메시지의 적시 전달이 어렵
다. 본 논문은 주행 장면의 맥락을 반영하여 전송 전략을 능동적으로 조절하는 상황 인지 기반 적응형 시맨틱 통신 프레임워크
를 제안한다. 제안 프레임워크는 SegFormer 기반 특징 추출을 통해 다중 해상도 의미 특징을 생성하고, 보행자·차량·도로 등
안전 핵심 클래스를우선순위로 설정하여 Semantic 마스킹을수행함으로써 중요 영역의 정보 보존을 강화한다. 이후 마스킹된
특징을 CNN(Convolutional Neural Network) 기반 Deep-JSCC(Deep Joint Source-Channel Coding) 구조의 시맨틱 인코더로
저차원잠재표현으로압축하여채널을통해전송하고, 수신단에서디코더로 복원한다. nuScenes-mini 데이터셋의전방 카메라
영상을 이용해 AWGN(Additive White Gaussian Noise) 채널에서 SNR(Signal to Noise Ratio) 변화를 적용한 시뮬레이션 결
과, 낮은 SNR 환경에서도 우선순위로지정된핵심클래스 영역은상대적으로안정적으로복원되며, 비중요배경 정보는의도적
으로 열화되는 경향을 확인하였다. 이를 통해 제한된 전송 자원을 안전과 직결된 의미 정보에 집중하여 통신 효율과 신뢰성을
동시에 향상할 수 있음을 보인다.

Ⅰ. 서 론

최근 AI(Artificial Intelligence)와 5G/6G 통신 기술의발전으로교통시

스템은 ITS(Intelligent Transport Systems)로 고도화되고있으며, 차량과

인프라가 실시간으로 정보를 공유하는 협력형 자율주행은 안전성과 교통

효율향상을위한핵심기술로자리잡고있다[1]. 이러한환경에서는차량

의 LiDAR, RADAR(RAdio Detection And Ranging), 고해상도카메라등

센서 데이터와 함께, 신호등 및 RSU(Road Side Unit)에서 생성되는 정보

가 V2X(Vehicle-to-Everything) 통신을 통해 공유되어야 한다.

그러나센서데이터의고용량화로인해제한된대역폭에서모든정보를

원본 수준으로 전송하는 방식은 통신 지연과 패킷 손실을 야기하며, 이는

안전 관련 메시지의 적시 전달을 어렵게 만든다[2]. 이를 해결하기 위한

대안으로, 수신 목적에 필요한 의미 정보만 전달하는 시맨틱 통신이 주목

받고 있다[3].

다만 기존 시맨틱통신은주행환경과 상황맥락을 충분히 반영하지 못

한 채 고정된 의미 추출/전송 정책을 적용하는 경우가 많다. 그 결과, 도

심·고속도로 등 환경이달라져도 동일한전송 정책이유지되어 중요도변

화에 적응하지 못하고, 불필요한 전송으로 대역폭 활용 효율이 저하될 수

있다.

이에 본 논문은 주행 상황을 인지하여 전송 전략을 능동적으로 조절하

는 상황 인지 기반 적응형 시맨틱 통신 기법을 제안한다. 제안 기법은 주

행 맥락에 따라 핵심 의미 정보를 선별하고 네트워크 상태에 맞춰 전송

정책을 최적화함으로써 통신 자원을 절감하는 것을 목표로 한다.

본 논문의 구성은 다음과 같다. 2절에서는 제안 시스템 모델과 실험 결

과, 3절에서는 결론 및 향후 연구 방향을 논의한다.

* : 교신저자

Ⅱ. 본론

본 절에서는 제안하는 시스템 구조를 설명한다. 제안하는 시스템의 전체

구조는 [그림 1]과 같으며, (1) 상황 인지 모듈(Context Awareness

Module), (2) 적응형 전송 정책 모듈(Adaptive Transmission Policy), 그

리고 (3) 시맨틱 인코더/디코더로 구성된다.

2.1 상황 인지 모듈 (Context Awareness Module)

상황 인지모듈은 차량의전방카메라 영상으로부터주행 장면을구성하

는 객체와 배경의 의미 정보를 추출하고, 전역적 문맥(Global Context)을

반영한 특징을 생성하는 역할을 한다. 본 연구에서는 다양한 해상도의 특

징을 효율적으로추출하기 위해 SegFormer를 백본 네트워크로 채택하였

다[4]. 입력 RGB 영상을  ∈××라고 할 때, 는 SegFormer의 계
층적 Transformer Encoder를 통과하며, 네 개의 stage에서 다중 해상도

특징 맵 가 순차적으로 추출된다. 각 특징 맵은 수식 1과 같이 정의된
다.

∈×  ×   ∈    (1)

[그림 1] 전체 시스템 구성도



여기서 는 SegFormer의 계층적 인코더의 번째 stage에서 출력되는
특징 맵을 의미하며,  ∙는 가 실수 값을 갖는 텐서임을 의미한다.는 번째 stage의 채널 수로서 추출되는특징의 표현 차원을 의미하며,
stage가 깊어질수록 증가한다. 또한 와 는 입력 영상의 높이와 너비
를 의미한다. 즉, 인코더의 stage 가 증가할수록 특징 맵의 공간 해상도
는 단계적으로 축소되고, 채널 차원은 증가함으로써 세밀한 지역 정보로

부터 전역 문맥 정보까지를 포괄하는 다중 scale 표현을 형성한다.

2.2 적응형 전송 정책 모듈(Adaptive Transmission Policy)

적응형 전송 정책 모듈은 상황 인지 모듈에서 추출된 다중 스케일 특징

과 현재 통신 채널 상태를 입력으로 최적의 전송 전략을 수립한다. 본 모

듈은 주행 안전 중요도에 따라 클래스별 우선순위를 보행자, 차량, 도로

순으로 사전 정의하며, 이를 바탕으로 입력된 특징 맵에서 의미론적 마스

킹을 수행하여영역별중요도를산출한다. 이와 동시에, 현재 채널 상태를

분석하여의미 표현을어느정도까지세밀하게 보존하여전송할지를결정

하는 적응형 제어 정보도 산출한다. 도출된 정보는 시맨틱 인코더로 전달

되어 압축 및 복원 과정을 수행한다.

2.3 시맨틱 인코더 및 디코더 (Semantic Encoder and Decoder)

본 시스템의시맨틱 인코더와 디코더는다중 스케일 특징맵의 효율적인

압축 및 복원을 위해 CNN(Convolutional Neural Network) 기반의

Deep-JSCC(Deep Joint Source-Channel Coding) 아키텍처로 설계되었

다. 송신단의인코더는정책모듈을통해중요도마스킹이적용된특징맵

을 입력받아, 컨볼루션(Convolution) 레이어, 배치 정규화(Batch

Normalization), PReLU(Parametric ReLU) 활성화함수를거쳐채널효율

적인 저차원 잠재 표현(Latent Representation)으로 압축한다. 이후 송신

전력제약을준수하기위해전력정규화를수행한뒤, 이를아날로그심볼

형태로변조하여무선채널로전송한다. 수신단의디코더는잡음이혼입된

수신신호로부터역컨볼루션연산을통해원본특징맵을복원하는역과정

을 수행한다. 본 연구에서는 의미론적 마스킹의 효용성 검증에 주안점을

두어 고정 압축률을 적용하였으나, 향후 CSI(Channel State Information)

피드백을 반영한 동적 압축률 최적화 기술로 확장할 예정이다.

2.4 시뮬레이션 및 결과

제안 시스템의 성능 검증을 위해 nuScenes-mini 데이터셋의 전방 카메

라(CAM_FRONT) 이미지를 사용하였으며, SegFormer-B0를 특징 추출

기로 활용하였다. 학습 파라미터는 Epoch 100, Batch Size 2, Learning

Rate 0.0001로 설정하였고, 무선 채널은 AWGN(Additive White

Gaussian Noise) 환경을 가정하였다. 결과는 [그림 2]에서 확인할 수 있

다. 주목할점은채널상태의변동과관계없이우선순위로지정된핵심클

래스들이 일관되게 안정적인 복원 성능을 유지한다는 것이다. SNR 15dB

의양호한환경은물론, SNR 5dB 및 0dB의극심한잡음환경에서도정책

모듈에 의해 마스킹된 보행자, 차량, 도로 영역은 형태적 왜곡 없이 명확

하게 복원되었다.

반면, 마스킹에 포함되지 않은 배경 정보는 SNR이 낮아짐에 따라 형체

가 깨지거나 파편화되는 양상을 보인다. 이러한 배경의 열화는 시스템의

오류가 아니라 배경에 할당될 전송 에너지를 마스킹된 객체 영역에 전부

집중시킨 결과이다. 이는 제한된 전송 전력을 핵심 객체 복원에 집중시킨

의도된결과로, 제안 기법이열악한통신환경에서도안전필수정보를효

과적으로 보존함을 입증한다.

Ⅲ. 결론

본 논문에서는 대역폭이 제한적이고 통신 상태가 가변적인 V2X 환경에

서 주행 안전성을 확보하기 위해, 상황 인지 기반의 적응형 시맨틱 통신

프레임워크를 제안하였다. 제안하는 시스템은 SegFormer를 백본으로 하

여 주행 장면의 맥락을 파악하고, 보행자, 차량, 도로와 같은 핵심 클래스

에 대해 시맨틱 마스킹을 수행함으로써 전송 우선순위를 부여하였다. 시

뮬레이션 결과 제안된 시스템은 극심한 잡음 환경에서도 중요 객체 영역

을 형태적 왜곡 없이 복원하여 시맨틱 통신의 효용성을 입증하였다. 이를

통해 한정된 전송 에너지를 안전과 직결된 객체에 집중시킴으로써 통신

효율과 신뢰성을 동시에 달성할 수 있음을 시사한다. 향후 연구에서는 본

논문에서 검증한프로토타입을 기반으로, 강화학습을 도입하여 채널 상태

와 주행 상황에 맞춰 압축률과 전송 정책을 스스로 최적화하는 방향으로

고도화할 예정이다.
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[그림 2] SNR 변화에 따른 세그멘테이션 결과 비교. (a) 입력 영상, (b) 정답(GT), (c)-(f) SNR 0, 5, 10, 15dB에서 복원 결과


