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요 약

본 논문은연합학습(Federated Learning) 환경에서 악성 클라이언트의 모델 공격으로 인한 보안 위협을완화하기위해, 탐지 불확실성을 확률적으로
모델링하여 반영하는 확률적 연합 언러닝(Probabilistic Federated Unlearning) 기법을 제안한다. 기존의 연합 언러닝 기법들은 탐지 결과를 정상 혹은
악성으로단정하는 결정론적(Deterministic) 방식을 채택하여오탐 및미탐에 따른성능 저하문제를겪었으나, 본 연구는 탐지결과를연속적인확률값
으로 해석하고 쌍곡탄젠트 기반의 비선형 가중치 함수를 사용하였다. CIFAR-10 데이터셋을 이용한 백도어 공격 시나리오 실험 결과, 제안 기법은
다양한 탐지 불확실성 상황에서도 모델의 정확도를 안정적으로 유지하면서 백도어 공격 성공률을 낮출 수 있음을 보였다.

Ⅰ. 서 론

최근인공지능기술의발전과함께데이터프라이버시보호가중요해지

면서, 데이터를 중앙 서버로 수집하지 않고 로컬에서 학습하는 연합학습

(Federated Learning)이 주목받고 있다[1]. 그러나 연합학습은 서버가 개

별 클라이언트의 원본 데이터를 직접 확인할 수 없다는 구조적 특성으로

인해 악의적 클라이언트가 전역 모델을 오염시키는 모델 중독 공격이나

백도어 공격에 취약하다. 특히 백도어 공격은 특정 입력 패턴에 대해서만

오작동을 유도하기 때문에 탐지가 매우 어렵다.

이러한위협에대응하여학습된모델에서특정데이터의영향을제거하

는 머신 언러닝(Machine Unlearning) 기술이 연합 언러닝(Federated

Unlearning)으로 확장되고 있다[2]. 기존의 대표적인 알고리즘인

FedRecovery[3]는 그래디언트 잔차를사용하여재학습 없이 성능을유지

하며 , FedEraser[4]는 클라이언트의업데이트 정보를주기적으로 저장한

후언러닝시이를보정하여모델을재구성한다. 그러나기존의연합언러

닝 기법들은 언러닝 수행 전 악의적 클라이언트를 정확히 탐지해야 한다

는 전제를 가지며, 탐지 결과를 정상 혹은 악성 두 가지로만 구분하는 결

정론적 구조를 취한다. 이러한 방식은 탐지 과정의 불완전성으로 인해 오

탐(False Positive) 발생 시 정상 클라이언트의기여가불필요하게제거되

어성능이저하되고, 미탐(False Negative) 발생 시악성 업데이트의영향

이남아있는한계를지닌다. 본 연구에서는탐지결과를연속적인확률값

으로 해석하고 이를 비선형 가중치로 언러닝 과정에 반영함으로써, 탐지

불확실성상황에서도 안정적이고강건한학습을가능하게 하는확률적연

합 언러닝 기법을 제안한다.

Ⅱ. 본론

본연구에서 제안하는시스템모델은중앙 서버와 개의클라이언트로
구성되며, 전체 과정은 학습과 언러닝 두 단계로 구분된다.

먼저 학습 과정에서 서버는 전역 모델 를 학습 참여 클라이언트에
배포한다. 클라이언트는서버로부터받은 모델을클라이언트의 로컬데이

터셋 로 학습하며, 이 과정에서 악성 클라이언트로 지정된 클라이언트
는 백도어 트리거가 삽입된 데이터를 사용하여 백도어 공격을 수행한다.

악성 클라이언트가 아닌 클라이언트는 정상적으로 로컬 데이터로 학습을

수행한다. 클라이언트의 로컬 업데이트 파라미터  … 를 서
버로 전송하여 서버는 이를 사용하여 전역 모델을 업데이트한다.

이후 언러닝과정에서클라이언트가 악성일 가능성을나타내는악성확

률 벡터    …  을 가중치로 사용하여 서버는 언러닝을 수행
한다. 각 는 0과 1 사이의확률값으로 본연구에서는확률값이주어졌다
고 가정하고 사용하였다.

클라이언트 의악성탐지확률 가주어질때, 다음과같이쌍곡탄젠
트함수를 사용한 가중치 함수를 정의하였다.

  tanhtanh 
이를 사용하여 세 가지 언러닝 방식으로 사용하여 업데이트를 수행한다.

확률 가중치 경사 하강법(Gradient-Descent, GD)은 확률값이 작은 경우

즉, 정상 클라이언트로 탐지될 가능성이 있는 경우 큰 가중치를 부여하여

언러닝을 진행한다.

        ∇    where         

  는 라운드 에서의 전역모델, 는학습률, 는가중치 평균그리고 는 클라이언트 의 로컬 손실함수이다.
확률 가중치 경사 상승법(Gradient-Ascent, GA)은 확률값이 큰 경우 즉,

악성으로 탐지될 가능성이 큰 경우로 큰 가중치를 부여하여 언러닝을 진

행한다.

        ∇    where         

  는 라운드 에서의 전역모델, 는학습률, 는가중치 평균그리고 는 클라이언트 의 로컬 손실함수이다.
마지막으로 확률가중치경사 하강/상승법(Gradient-Des/Asc, GDGA)의

경우 확률값 0.5를 기준으로 나누어서 정상으로 판단된 클라이언트는 경

사하강을악성으로 판단된클라이어트는경사상승으로 진행하여업데이

트를 한다.



         정상  Descent    ≥  악성 Ascent   



            ≥ 

          ∇  where    
 는 언러닝 라운드 에서의 전역 모델, 는 학습률, 는 경사 하강 또
는 상승을결정하는 부호,  는 클라이언트 의 로컬 손실함수, 는
확률 가중치 그리고 는 가중치 평균이다.
Ⅲ. 실험 및 결과 분석

1. 실험 설계 및 환경

실험을 위해 CIFAR-10 데이터셋의 60,000장 이미지를 활용하였으며,

데이터를 I.I.D.와 non-I.I.D. 방식으로 클라이언트에 분배하였다. 학습 모

델은 ResNet-18을 사용하였으며, 악성 클라이언트는 이미지 우측 하단에

× 흰색 패치를 삽입하는 백도어 공격을 수행하도록 설정하였다. 전체
학습은 30라운드를진행하고 언러닝을 30라운드 진행하였다. 탐지 불확실

성을가정한확률벡터 를 [0.7, 0.6, 0.6, 0.22, 0.2, 0.2, 0.15, 0.13, 0.1, 0.1]
로 설정하여 시나리오를 진행하였다.

2. 평가 지표

· 정확도 (Accuracy, Acc): 모델의 전반적인 분류 성능을 측정하기 위한

지표이다. 테스트 데이터셋 에 대해 모델이 올바르게 분류한 이미지
의비율로정의되며, 언러닝이후에도모델이원래의성능을얼마나잘유

지하는지를 평가한다.

Acc   ∈ 
⋅   

· 공격 성공률 (Attack Success Rate, ASR): 백도어 공격의 성공 정도

및 언러닝을 통한 공격 완화 효과를 측정하는 지표이다. 입력 패턴

(Trigger)이 삽입된 이미지가 공격자가 의도한 타깃 라벨로 분류되는 비

율로 정의된다. 언러닝이 효과적으로 수행될수록 이 수치는 낮아지게 된

다.

ASR   ∈ 
⋅   target

3. 실험 결과

· 정확도 측면 : 전체시나리오에서확률적 방식은결정론적 방식보다일

관되게 높은 정확도를 유지하였다. 특히 non-I.I.D. 환경에서 결정론적 방

식의급격한 정확도하락을효과적으로완화함으로써 모델의안정성을보

였다.

· 공격성공률측면 : 전체 시나리오에서 확률적방식은 결정론적방식보

다 완만한 감소 경향을 보였다. 이는 확률 가중치에 의한 영향으로 인한

것으로 확률적 방식이 결정론적 방식의 결과에 수렴하는 결과를 보였다.

이를 탐지 오차에 의한 정상 기여도의 과도한 손실을 방지하면서도 공격

영향을 소거할 수 있음을 보였다.

구분
Probabilistic

Deterministic     
GD 76.38(0.15) 76.10(0.32) 75.65(0.29) 75.65(0.29)

GA 73.90(0.48) 72.54(1.69) 71.43(2.88) 71.43(2.88)

GDGA 73.26(1.95) 71.15(3.81) 70.38(4.18) 70.38(4.18)

[표1] 시나리오 정확도 결과(%), I.I.D

구분
Probabilistic

Deterministic     
GD 69.23(15.80) 51.23(22.28) 45.62(27.38) 45.62(27.38)

GA 22.58(36.45) 19.37(35.03) 19.50(36.12) 19.50(36.12)

GDGA 18.96(36.46) 18.52(36.63) 18.51(36.78) 18.51(36.78)

[표2] 시나리오 공격 성공률 결과(%), I.I.D

구분
Probabilistic

Deterministic     
GD  74.84(0.54) 73.49(0.81) 72.97(1.18) 72.97(1.18)

GA 69.95(1.08) 62.14(8.69) 51.81(21.91) 51.81(21.91)

GDGA 66.51(3.60) 61.55(8.14) 58.00(12.46) 58.00(12.46)

[표3] 시나리오 정확도 결과(%), non-I.I.D

구분
Probabilistic

Deterministic     
GD 89.26(8.14) 72.29(22.22) 63.96(33.05) 63.96(33.05)

GA 23.56(37.19) 20.18(37.00) 19.71(37.18) 19.71(37.18)

GDGA 18.37(33.33) 17.69(34.48) 17.03(33.47) 17.03(33.47)

[표4] 시나리오 공격 성공률 결과(%), non-I.I.D

Ⅳ. 결론

본 연구는연합학습환경에서악성클라이언트탐지의불확실성 문제를

해결하기 위해 확률 기반 연합 언러닝 기법을 제안하였다. 실험 결과, 제

안 기법은 평가 지표인 정확도와공격 성공률 측면에서 기존 방식보다 뛰

어난 균형을 보여주었다. 이는 실제 연합학습 시스템의 보안성과 신뢰성

을 높이는 데 실질적인 기여할 것으로 기대된다.
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[그림1] 시스템 모델


