ICU Patient Vital Signs Forecasting with Curriculum-based Seq2Seq Learning

Soyoung Jang, Joowon Oh, Chaewon Kim, Yeojin Shin, Hyeonji Rhee, Suah Hong, Jaeho Lee
Duksung Women's Univ.

thdud030101@duksung.ac.kr, 2000violet@duksung.ac.kr, noweahc04@duksung.ac.kr,
yveowlsl13@duksung.ac.kr, 2023081 2@duksung.ac.kr, hongsuaO5@duksung.ac.kr,
izeho@duksung.ac.kr

Abstract

This study proposes a framework that combines mask—-based pre—training with ultra—fast curriculum learning to
enable the precise multi—step forecasting of ICU bio signals, which have high missing rates and irregular variability.
First, it learns robust features from the data via a transformer encoder. Then, it applies an aggressive scheduling
strategy that increases the prediction length by 10 epochs at a time to address error accumulation issues in multi—
step forecasting. Furthermore, recent trends and medication information are incorporated into the decoder to reflect
clinical context. Experiments on the MIMIC-III dataset demonstrate that the proposed model achieves an MSE of
1.7991, providing faster and more stable prediction performance than existing methods.

I . Introduction

Accurate prediction of ICU patients' vital signs is
essential for early medical intervention. However, ICU
data presents three major challenges: (1) a high rate of
missing data exceeding 50%, (2) irregular measurement
intervals and (3) abrupt changes due to clinical
interventions such as the administration of medication.

Existing studies have primarily focused on
classification problems such as mortality prediction,
failing to adequately address the cumulative error issue
that arises during long-term time series forecasting.
Furthermore, curriculum learning, which gradually
increases in difficulty, often suffers from excessively
slow learning speeds, which limits its practicality.

This paper therefore proposes a two-stage
prediction framework to address these challenges.

- Phase 1: extracts robust features from
incomplete data through mask-based pre-
training.

- Phase 2: utilizes a decoder that incorporates
trend reflection and action information. It applies
to a curriculum technique that increases the
prediction length every 10 epochs.

Experiments using MIMIC-III data demonstrate that
the proposed model achieves a validation loss of 1.7991,
proving it to be faster and more accurate than existing
models. Notably, the aggressive learning schedule was
confirmed to increase convergence speed by over
twofold without compromising the stability of complex
clinical time series predictions.

IO. Related Work

Previous studies have proposed approaches such as
GRU-D [1], which uses decay techniques, and STraTS
[2], which is based on self-supervised learning, to
address issues with missing data in ICU data. However,
most of these approaches focused on static tasks such
as mortality classification, which limit their applicability
to continuous vital sign prediction. To address this
issue, models such as BEHRT [3] and Med-BERT [4]
have demonstrated the effectiveness of pre—training on
electronic health records (EHRs); however, these
models were also primarily designed for discrete
diagnostic codes. This study extends the concept of
pre—training to continuous numerical domains,
introducing curriculum learning to prevent error
accumulation in time series prediction. Unlike prior
work, it applies to an ultra—fast, stepwise learning
schedule optimized for clinical scenarios, rather than
conventional slow learning methods. This ensures the
stability and efficiency of multi—stage prediction, even
in environments with high data sparsity.

II. Methodology

As shown in Fig. 1, the framework proposed in this
study predicts the next four—step state based on the
24-hour bio signal history of critically ill patients. The
framework consists of two main stages: pre-—training
and multi-stage prediction learning. First, during the



data pre-processing stage, 17 vital signs extracted
from the MIMIC-III dataset were combined with
information on three Kkey clinical interventions:
vasopressors, antibiotics and IV fluids. To address the
outlier problem inherent in ICU data, robust IQR scaling
was applied, and the numerical data was clipped to the
range [-10, 10] to ensure training stability. An
observation mask was generated to enable the model to
recognize actual observations, even in environments
with irregular measurements.
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Figure 1. Overall Framework of the Proposed Model.

(Top) Phase 1: Masked self-supervised pre-training to learn
robust representations from sparse ICU data.

(Bottom) Phase 2: Curriculum-based Seq2Seq forecasting
incorporating clinical actions and trend—based initialization.
The prediction horizon extends progressively from 1 to 6
steps during training.
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Phase 1, depicted on the left of Fig. 1, is the masked
pre—training stage designed to overcome data sparsity.
This stage uses a six-layer Transformer encoder to
perform self-supervised learning by randomly masking
15% of the input data and then restoring it. During this
process, the model simultaneously minimizes (Lyyetqin =
Lmaskeda + 0.1 Lyext—step ) the reconstruction error
(Lmaskea) and the next-step prediction error (Lpext—step)s
thereby learning robust feature representations of
patient status even in environments with frequent
missing values. Phase 2 involves decoder training for
multi—step prediction while the pre-trained encoder is
fixed. As shown on the right of Fig. 1, the decoder
reflects the current clinical workflow through trend-
based initialization, analyzing changes from the
previous three steps ( vi_5,vi_q,v: ). It combines
treatment information (action) via a cross—attention
mechanism, incorporating signal changes resulting from
medical staff intervention into the prediction. Finally, to
address the problem of error accumulation in multi-
step prediction, Curriculum Scheduling is introduced.
This expands the prediction horizon. Here, we
introduce an additional loss (Lgeng), to improve the
accuracy with which the initial trend is identified,
thereby controlling the direction in which the learning
process progresses.

Finally, to address the problem of error accumulation
in multi—step prediction, curriculum scheduling is
introduced. This expands the prediction horizon by one

step every ten epoch, reaching a maximum of four steps.

This guides the model to adapt quickly to changes in
difficulty. Furthermore, to capture abrupt numerical
changes that are clinically significant, a clinically
weighted loss function (L=Y,m, O [(D; —v)? (1+

2|ve — ve_11)] + 0.5 - Lipeng) is used to enhance prediction
precision.

IV. Experiments

To evaluate this study's performance, a multi—stage
bio signal prediction experiment was conducted using
data extracted from the MIMIC-III dataset on 5,001
patients. Model training was conducted in a PyTorch
environment using the AdamW optimization algorithm
(LR = 5e7%). Ultra—fast curriculum scheduling was used
to expand the prediction horizon every 10 epochs,
achieving the final six-step prediction performance.
The experimental results showed that this framework
achieved an MSE of 1.7991 on the final test set, proving
its ability to make stable predictions for complex
clinical time series data.

Analysis of the ultra—fast curriculum learning
revealed that, although temporary increases in loss
values were observed at each prediction horizon
expansion point, the model rapidly converged
thereafter, ensuring long—term prediction performance.
This suggests that the initial learning instability and
error accumulation issues associated with making 6-
step predictions were effectively resolved by adjusting
the difficulty step by step. Furthermore, robust
interquartile range (IQR) scaling and numerical clipping
within the range [-10, 10] minimized the impact of
outliers caused by sensor errors, enabling the model to
focus on clinically meaningful patterns.

Elimination experiments assessing the contribution of
each internal component of the proposed model
revealed the lowest error rate when curriculum
learning and pre—-training were both applied. Integrating
trend-based initialization and action conditioning
produced prediction trajectories that closely matched
the actual flow of changes in clinical data,
outperforming predictions based on time series

information alone. These results suggest that
enhancing data representativeness through pre-
training, combined  with clinically = contextual

information, is key to enabling precise state prediction
in high-risk environments such as ICUs.

V. Conclusion

This study proposes a multi-stage bio signal
prediction framework that combines mask—-based pre-—
training and ultra—fast curriculum scheduling. This
framework is designed for use in the ICU environment,
which is characterized by extreme data sparsity and
volatility. Experimental results demonstrate that the
proposed model achieves an MSE of 1.7991, proving its
superiority over existing models. Notably, stepwise
difficulty adjustment effectively mitigates error
accumulation in multi-stage prediction, enhancing
learning stability. These results have clinical value as
they assist healthcare providers with proactive
decision—making by presenting the trajectory of
numerical changes over the next 4 hours, going beyond



simple patient status classification. Plans include
integrating additional unstructured text data from
clinical notes and validating generalization performance
across diverse patient cohorts, with the aim of
developing this into a core technology for real-time
patient monitoring systems.
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