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요 약 
지능형 반사 표면(RIS)은 6G 이동통신에서 무선 채널을 능동적으로 제어하여 성능을 향상시키는 핵심 기술이다. 

그러나 대규모 반사 소자 환경에서는 위상 제어를 위한 연산 복잡도가 증가하여 실시간 적용에 한계가 존재한다. 본 
논문에서는 딥러닝 기반 RIS 연구 동향을 분석하고, AO 기반 기법과 딥러닝 기반 위상 제어 기법의 성능 및 연산 효율을 
비교한다. 시뮬레이션 결과, 딥러닝 기법은 기존 AO 기법 대비 유사한 전송 성능을 유지하면서도 실행 시간을 크게 
단축하여, 6G 초저지연 RIS 제어에 효과적인 대안임을 확인하였다.

Ⅰ. 서 론   
6G 이동통신 시스템은 초고속, 초저지연의 지능형 

초연결 네트워크를 지향하지만, 기존 무선 통신은 건물 
차폐 환경에서 성능 저하가 심각하며, 
밀리미터파(mmWave) 및 테라헤르츠(THz) 
대역에서는 높은 경로 손실과 강한 직진성으로 통신 
음영 문제가 더욱 두드러진다. 이러한 한계를 극복하기 
위한 대안으로, 입사 전파의 위상과 진폭을 제어하여 
무선 환경을 재구성하는 지능형 반사 
표면(Reconfigurable Intelligent Surface, RIS)이 
주목받고 있다 [1].   
그러나 RIS의 실제 적용을 위해서는 복합 채널 

구조로 인한 채널 추정 오버헤드와 대규모 위상 제어에 
따른 비볼록 최적화 문제가 존재하며, 
SDR(Semidefinite Relaxation) 및 AO(Alternating 
Optimization) 기반 기법은 높은 계산 복잡도로 실시간 
대응에 한계를 가진다 [2]. 이에 최근에는 딥러닝 기반 
RIS 제어 기법이 대안으로 제시되고 있으며, 데이터 
기반 학습을 통해 반복적 최적화 없이 효율적인 위상 
제어가 가능하고, 불완전한 채널 상태 정보(Channel 
State Information, CSI) 환경에서도 안정적인 성능을 
제공한다 [2]. [표 1]은 기존 최적화 기반 RIS 제어 
기법과 딥러닝 기반 접근법을 비교한 결과로, 딥러닝 
기법이 실시간성, 확장성 및 불확실성 대응 측면에서 
구조적 이점을 보임을 나타낸다.  

 

구분 
기존 RIS 

제어 기법 
딥러닝 기반 RIS 제어 

기법 

제어 방식 
반복적 

수학적 최적화 
데이터 기반 학습 

계산 복잡도 높음 낮음 

실시간 
적용성 

제한적 우수 

CSI 의존성 
완전한 CSI 

필요 
불완전 CSI 허용 

환경 변화 
대응 

재최적화 
필요 

학습 기반 적응 

대규모 RIS 
확장성 

제한적 우수 

[표 1] 기존 최적화 기반 RIS 제어 기법과 딥러닝 

기반 RIS 제어 기법의 비교 

II. 딥러닝 기반 RIS 제어 기술 동향 

RIS 지원 무선 통신 시스템에서는 기지국–RIS–
사용자로 구성된 채널의 정확한 추정이 필수적이나, 
제한된 파일럿 자원과 반사 소자 수 증가로 인해 추정 
오차가 커지며 이는 위상 제어 및 빔포밍 성능 저하로 
이어진다. 이를 완화하기 위해, 최근에는 RIS 보조 
채널의 구조적 특성을 데이터로부터 학습하는 딥러닝 

기반 채널 추정 기법이 제안되었으며, 제한된 파일럿 
환경이나 시변 채널에서도 성능 향상이 가능함이 
보고되었다 [3], [4]. [3]에서는 mmWave RIS 
시스템에서 압축 센싱 기반 1 차 추정 결과의 오차를 
노이즈로 간주하고, DnCNN(Denoising Convolutional 
Neural Network)  기반 구조를 적용하여 제한된 
파일럿 환경에서도 채널 추정 정확도를 향상시켰다. 
또한 [4]에서는 사용자 이동에 따른 시변 채널 특성을 

고려하여 CNN–LSTM 구조를 이용한 채널 예측 
기법을 제안하였으며, 이를 통해 파일럿 전송 빈도를 
줄이면서도 이동 사용자 및 저 SNR 환경에서 안정적인 
빔포밍 성능을 유지할 수 있음을 보였다.  

한편, RIS 위상 설계는 비선형·비볼록 최적화 문제로 

정의되며, SDR 및 AO 기반 기법은 높은 계산 복잡도로 
실시간 적용에 한계를 가진다. 이에 따라 기존 최적화 
해를 학습 데이터로 활용하는 심층 신경망(Deep 
Neural Networks, DNN) 기반 지도 학습 기법이 
제안되었으며, 추론 단계에서 낮은 계산 복잡도로 
최적에 근접한 성능을 달성할 수 있다 [2].  
실제 6G 환경과 같이 CSI 획득이 제한적이고 환경 

변화가 빈번한 경우에는 지도 학습의 적용이 
어려우므로, 환경과의 상호작용을 통해 정책을 
학습하는 심층 강화학습(Deep Reinforcement 
Learning, DRL)이 대안으로 주목받고 있다. 특히 
DDPG(Deep Deterministic Policy Gradient) 기반 
접근법은 연속적인 위상 제어가 가능하며, 최근에는 
채널 지식 맵(Channel Knowledge Map, CKM)을 
결합하여 학습 효율과 제어 안정성을 향상시키는 
연구도 진행되고 있다 [5], [6]. 

 
[그림 1] 심층 강화학습 기반 RIS 제어 구조 

 최근 딥러닝 기반 RIS 연구는 구조 기반 모델과 
강화학습을 중심으로 확장되고 있으며, 제어 방식과 
CSI 가정에 따라 상이한 특성을 보인다. [표 2]는 
이러한 연구들을 비교 및 정리한 것으로, 강화학습 
기반 기법은 불완전한 CSI 환경에서의 온라인 제어에 
적합한 반면 계산 복잡도와 학습 안정성에 한계를 
가지며, 최적화 근사형 딥러닝 모델은 추론 단계의 
낮은 복잡도를 제공하나 학습 데이터 품질에 의존한다. 
본 논문에서는 이러한 특성을 비교하기 위해 AO 기반 



기법과 딥러닝 기반 위상 제어 기법의 성능 및 계산 
복잡도를 시뮬레이션으로 분석한다. 
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[표 2] 딥러닝 기반 RIS 관련 최신 연구 동향 

III. 시뮬레이션 환경 및 성능 분석 
본 연구에서는 16 개 안테나를 갖춘 기지국, 128 개의 

반사 소자를 가진 RIS, 그리고 단일 안테나 사용자를 

포함하는 RIS 지원 MISO 시스템을 고려한다. 기지국–

RIS 링크와 RIS–사용자 링크는 도심 환경을 반영하여 
Rician 페이딩 채널로 모델링하였다. RIS 반사 소자는 
단위 크기의 반사 계수를 가지며, 각 소자의 반사 

위상은 [−π,π] 범위에서 연속적으로 제어 가능하다고 
가정한다. 이에 따라 RIS 반사 행렬은 다음과 같이 
정의된다. 

Φ =  𝑑𝑖𝑎𝑔(𝑒𝑗𝜃1 , 𝑒𝑗𝜃2 , … , 𝑒𝑗𝜃𝑁), 𝜃𝑛 ∈ [−𝜋, 𝜋]   (1) 

RIS 를 경유한 유효 채널은 기지국–RIS 채널 𝑯𝑏𝑟 과 

RIS–사용자 채널 𝒉𝑟𝑢 를 이용하여 다음과 같이 
표현된다. 

𝒉{𝑒𝑓𝑓} =  𝒉𝑟𝑢
𝐻 Φ𝑯𝑏𝑟               (2) 

비교 대상인 AO 기반 위상 최적화 기법은 수신 신호 
세기 최대화를 목표로 하며, 다음의 최적화 문제를 
반복적으로 근사적으로 해결한다. 

max
Φ,𝑤

,||𝒉𝑟𝑢
𝐻 Φ𝑯𝑏𝑟||2        𝑠. 𝑡. |Φ{𝑛,𝑛}| =  1      (3) 

여기서 𝒘 는 기지국 빔포밍 벡터를 의미하며, 계산 
복잡도를 고려하여 AO 반복 횟수는 3 회로 제한하였다. 
딥러닝 기반 RIS 위상 제어 기법은 DNN 기반 회귀 
모델로 설계되었으며, 채널 정보를 입력으로 받아 RIS 
반사 위상 벡터를 직접 예측한다. 해당 모델은 AO 
기반 최적 위상 해를 정답(label)으로 사용하여 
오프라인 사전 학습을 수행하며, 출력은 다음과 같이 
AO 기반 위상을 근사하도록 학습된다. 

𝜃 =  𝑓𝜔(𝑯𝑏𝑟 , 𝒉𝑟𝑢) ≈ 𝜃𝐴𝑂           (4) 
학습 과정에서는 평균 제곱 오차(Mean Square Error,, 
MSE) 손실 함수를 최소화한다. 

𝐿 =  ||𝑓𝜔(𝑥) − 𝜃𝐴𝑂||2
2             (5) 

성능 평가는 10,000 개의 테스트 샘플을 기반으로 
수행하였으며, 학습 시간을 제외한 순수 추론 시간과 
achievable rate 를 주요 성능 지표로 사용하였으며. 
다음과 같이 정의된다. 

𝑅 =  𝑙𝑜𝑔2( 1 +  𝑆𝑁𝑅 ⋅ ||𝒉𝑟𝑢
𝐻 Φ𝑯𝑏𝑟||2)    (6) 

 

[그림 2] AO 기법과 DNN 기법의 성능 비교  

[그림 2]는 RIS 반사 소자 수 128 개 환경에서 AO 
기반 기법, 제안한 딥러닝 기법, 그리고 무작위 위상 
기법의 전송 효율을 비교한 결과를 보여준다. 딥러닝 
기법은 전 SNR 구간에서 AO 기법에 근접한 성능을 
유지하였다. 또한 [표 3]에 나타난 실행 시간 비교 
결과, 딥러닝 기법은 SNR 30 dB 기준으로 AO 대비 약 
95.3%의 성능을 유지하면서도 실행 시간을 약 5.5 배 
단축하여, 6G 초저지연 RIS 제어에 효과적인 대안임을 
확인하였다. 

 

항목 AO  DNN 
비교 

결과 

Achievable 
Rate(30 dB) 

27.5 
bps/Hz 

26.2 
bps/Hz 

AO 
대비 약 
95.3% 
성능 유지 

성능 손실 기준 약 4.7% 
경미한 

성능 저하 

실행 시간 2.4778 초 0.4478 초 
약 

5.5 배 
속도 향상 

[표 2] AO 기법과 DNN 기법의 성능 및 계산 시간 

비교 

V. 결론  
본 논문에서는 딥러닝 기반 RIS 시스템의 연구 

동향을 정리하고, AO 기반 기법과 딥러닝 기반 위상 
제어 기법의 성능 및 계산 복잡도를 비교하였다. 
시뮬레이션 결과, 딥러닝 기법은 AO 대비 95% 이상의 
achievable rate 를 유지하면서도 계산 시간을 크게 
단축하여, 대규모 RIS 환경에서 실용적인 대안임을 
확인하였다. 향후 연구로는 다중 사용자 환경 확장과 
불완전한 채널 정보에 강인한 모델 설계를 진행할 
예정이다. 
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