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요 약

본 연구는 GPS·IMU의 센서 오차와 기존 딥러닝 모델의 블랙박스 문제를 해결하기 위해 물리 정보 신경망(Physics-Informed Neural Network,
PINN) 기반의 차량 속도 추정 모델을 제안한다. 가속도 바이어스가 보정된 칼만 필터 데이터를 LSTM 구조에 입력하고, 운동학적 원리를 학습 제약
조건으로 적용하여 물리적 타당성을 확보하였다. 실험 결과, MAE 0.836 km/h의 정확도를 달성하며 칼만 필터만 적용한 방법 대비 14.6% 성능을

개선하였으며. 물리적 인과관계 분석을 통해 예측 결과의 신뢰성과 설명 가능성을 검증하였다.

Ⅰ. 서 론

자율주행 및 첨단 운전자 보조 시스템(Advanced Driver Assistance

System, ADAS)에서 정밀한 차량 속도 추정은 필수 요소이다[1]. 최근에

는 스마트폰을 포함한 다양한 독립형 기기의 센서를 활용하여 차량의 속

도 및주행 상태를 파악하는연구가지속적으로 진행되고 있다[2]. 그러나

일반적으로 사용하는 저가형 센서 중, GPS는 도심 내 신호 단절 문제와

IMU는 바이어스로인한 오차 누적이 존재한다. 이를 위해 활용되는 기존

딥러닝 연구들의 경우 통계 패턴에만 의존하는 ‘블랙박스’ 문제로 신뢰성

확보에 대한 난제가 존재한다[3]. 특히 해당 모델의 경우, 물리 역학적인

환경 고려를 하지 않고 훈련을 진행하는 바 시계열적 특성은 학습하지만,

실질적인예측정확률도출및개선에문제가잔존한다. 본 연구에서는이

를 해결하고자 물리 역학적 원리를 학습에 반영한 Physics-Informed

Neural Network(PINN)[4] 기반의 제안 모델을 통해 실질적인 예측 개선

향성에대한 가능성을확보한다. 구체적으로실제 차량내 OBD 데이터및

GPS와 IMU로 수집한 실측 데이터를 기반으로 하여 전처리 및 최적화를

수행하여 정확도와 물리적 타당성을 정량적으로 검증하고자 한다.

Ⅱ. 데이터 수집 및 전처리

그림 1과 같이, 2016년형 현대자동차 아반떼 AD GDi 1.6 가솔린 차량을
사용하여서울도심동일코스를약 6분간 2회 주행하였다. 모델의일반화
성능 검증을 위해 두 주행 데이터를 각각 학습용(35,251개)과 검증용
(34,822개)으로 데이터셋을 구축하였으며, 10ms 간격(100Hz)으로 샘플링

된 데이터의 과거 10개 타임스텝을 하나의 입력 시퀀스로 구성하였다.
Raspberry Pi 4 기반 데이터 수집및 통합관리 시스템을 통해 차량루프
중앙에 Quectel GNSS 액티브안테나(Ublox NEO-M8N)와좌측 후석 도
어하단내벽에 SparkFun 6DoF IMU를 설치하여 위치 및관성데이터를
수집하였다. 동시에 OBD II(On-Board Diagnostics II, 온 보드 진단 II)
포트를 통해 휠 속도 센서 기반의 속도 데이터를 수집하였다.
모델 학습의 기준값(Ground Truth)으로는 OBD 데이터를 사용하였다.

그림 2와 같이 GPS 데이터는 IMU 대비 낮은 샘플링 주기로 인해, IMU

기준으로 시간축을 정렬하면 GPS 값이 존재하지 않는 구간이 관찰된다.

IMU 데이터는 정지상태의자이로 바이어스 제거, 중력벡터차감, 센서-

차량 간좌표계변환을거쳤다. 전처리한 IMU는높은샘플링주기를갖지

만오차가누적되고, GPS는 절대정보를제공하나결측구간이존재한다.

이를 보완하기 위해 선형 칼만 필터를 적용하여두 센서를 융합하였다[5].

GPS 값이 유효한 구간에서는식 (1)을 이용해측정업데이트를 수행하고,

결측 구간에서는 식 (2)를 이용해 예측만 수행하였다. 식(1)~(2)의 는
상태전이및관측행렬, 는오차공분산, 는칼만이득이며, 와 은
각각 모델과 센서의 노이즈 공분산 행렬로 시스템의 신뢰도를 결정한다.

          ̂   ̂   ̂ (1)

 ̂    ̂         (2)

상태 벡터     는위치, 속도, 가속도 바이어스로구성되어 센서
드리프트를 보정한다. 시스템 행렬 는 등가속도 운동 모델에 기반하여

그림 2. GPS(빨강), OBD(파랑), 칼만 필터 출력(초록) 속도 비교

그림 1. OBD 속도/GPS 위치 기반 두 주행 데이터셋의 주행 궤적



식 (3)과 같이 정의되며, 이는 Grewal 등[6]의 모델을 따른다.

 

 

       
(3)

본 연구에서는 그리드 서치를 통해 시스템 파라미터의 최적값(=0.001,=1.0, =0.01)을 선정하여 적용하였다.
Ⅲ. 모델 설계

앞서 작성된 칼만 필터 예측치내 데이터의 시간적 의존성 학습을 통한
개선을 위해 Long Short-Term Memory(LSTM) 기반 PINN 모델을 그
림 3과 같이적용하였다[4]. 칼만 필터를 거친 속도와 전처리된 IMU 가속
도가정규화되어 입력된다. 2개의 LSTM 레이어(64 units), ReLU가 적용
된 완전 연결 레이어(32 units), 출력 레이어(1 unit)로 구성하였고, 학습
조건은 배치크기 128, Adam (학습률 0.001), Epoch 100으로 설정하였다.
손실 함수는 데이터 손실과 물리 손실의 가중합으로 구성되며, 물리 손실

은 운동학적 관계식(    ∆ )을 제약 조건으로 활용한다. 물
리 손실 가중치는 그리드 서치를 통해 0.5를 적용하였으며, 이는 모델이
물리적 인과관계를 준수하도록 유도하여 비현실적인 예측을 방지한다.

Ⅳ. 실험 결과

표 2에서 PINN 학습 모델은 Train MAE 0.771 km/h, Test MAE 0.836

km/h의 성능을 달성하였으며, 일반화 오차 8.44%로 과적합 없이 안정적

으로 학습하였다. 이는 칼만 필터만 적용한 GPS+IMU 대비 14.6%, GPS

단일 대비 73.8% 개선된 결과이다. 특히 잔차 평균 0.004 km/h 및 R²

0.9736을 기록하고 잔차 정규성(p=0.082)을 확보하여, 물리적 편향 없이

운동학적 원리를 준수함을 검증하였다.

표 3은 속도 구간별 분류 성능 평가 결과, 모든구간에서 F1 Score 0.88

이상을 달성하였다. 중속 구간(15~25 km/h)에서 0.914로 가장 높은 성능

을나타냈으며, 전체 데이터의 50.6%를 차지하는 주행환경에서안정적인

속도 추정이 가능함을 확인하였다.

그림 4에서 제안모델은급가속및급감속이빈번한환경에서도 OBD 실

측치를정밀하게추종한다. 또한 제약조건덕분에예측값이튀지않고안

정적인 속도 곡선을 유지하였다. 이러한 결과는 통계적 패턴에만 의존하

는 일반적인 LSTM과 달리, 모델이 물리적 인과관계에 기반한 높은 추정

신뢰성과 설명 가능성을 갖추었음을 보여준다.

Ⅴ. 결 론

본 연구는 PINN을 활용하여 외부 센서 데이터만으로 정밀한 차량 속도

추정모델을제안하였으며 물리역학적원리를적용함으로써 예측결과의

신뢰성을 확보하였다. 향후 연구에서는 다양한 주행 데이터셋 구축을 통

해 학습 적용 및 물리 기반의 역문제 해결 도입으로 공기 저항 및 마찰력

등 차량의 동역학적 특성 반영한 모델의 범용성을 확장할 예정이다. 추가

로 V2X 통신 및 ADAS 연동을 통해 실시간 자율주행 환경에 부합하는

속도 추정 플랫폼으로 고도화하여, 주행 안전성 향상에 기여하고자 한다.
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그림 3. PINN 모델 아키텍처 다이어그램

방법 MAE(km/h) RMSE(km/h) R²

GPS 단일 3.190 5.224 0.4868

GPS+IMU 칼만 필터 0.979 1.301 0.9682

PINN 학습 모델 0.836 1.185 0.9736

표 2. GPS 단일, GPS+IMU 칼만 필터, PINN 학습 모델 성능 비교

그림 4. OBD 실측 속도 대비 PINN 모델 예측 성능 비교

속도 구간 F1 Score 데이터 비율

정지 (0~5 km/h) 0.901 5.2%

저속 (5~15 km/h) 0.885 22.3%

중속 (15~25 km/h) 0.914 50.6%

고속 (25+ km/h) 0.900 21.9%

표 3. 정지/저속/중속/고속 4개 속도 구간 예측 성능 평가 결과


