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요 약

본 논문은 DNA 염기서열인코딩을위한 Conformer 기반 모델을 제안한다. 제안하는 방법은 self-attention과 Convolution 모듈을 통합한 Conformer
구조를 MFE(Minimum Free Energy) 예측의 핵심 백본으로 도입하여, 염기 서열 내 장거리 상호작용과 연속적인 염기 패턴을 단일 구조에서 동시에
모델링한다. 특히 Conformer 내부의 convolution 모듈을 다중 커널을 병렬로 적용하는 inception 형태로 확장하여, 서로 다른 길이의 연속적인 염기
패턴을 동시에 학습할 수 있도록 설계하였다. 이를 통해 순차 의존성을 제거하고 병렬 처리가 가능한 MFE 예측 모델을 구성하여 기존
BiLSTM-Transformer 기반 구조 대비 예측 정확도를 크게 향상시킨다.

Ⅰ. 서 론

DNA 기반 데이터 저장 시스템에서는 디지털 정보가 다수의 염기 서열

로인코딩되며, 각 서열들은상보적인염기결합으로인해이차구조를형

성하여 원치 않은 반응이 일어날 수 있다. 이차 구조의 형성 정도는 최소

자유에너지 값으로정량화될 수있으며, MFE는 염기서열의구조적안정

성을 평가하는 핵심 지표로 활용된다. 따라서 인코딩 단계에서 염기 서열

의 MFE를 예측하고이를 기반으로서열을선별하는 스크리닝 과정은 중

요한 절차이다. 염기 서열의 MFE는 일반적으로 NUPACK[1]과 같은 동

적 프로그래밍 기반 소프트웨어를 통해 계산되며, 이러한 계산 방식은 서

열 길이가 증가할수록 계산 복잡도가 급격히 증가하는 한계를 가진다. 특

히 대규모 인코딩 환경에서 다수의 염기 서열을 반복적으로 평가하는 경

우, 계산 비용이실질적인병목으로 작용할수있다. 이로 인해MFE 계산

을 효율적으로 근사할 수 있는 딥러닝 기반 예측 모델에 대한 필요성이

제기된다. 기존 연구[2]에서는 BiLSTM(Bidirectional Long Short Term

Memory)과 Transformer를 결합한 순차적 모델을 통해 염기서열의 MF

E를 예측하였으나, 순차 처리 구조로 인한 병렬성 및 확장성의한계가존

재한다. 본 논문에서는 self-attention과 convolution 모듈을통합한 Confo

rmer[3] 구조를 MFE 예측의 핵심 백본으로 도입하고, 서로 다른 길이의

연속적인 염기 패턴을 효과적으로 모델링 하기 위해 convolution 모듈을

Inception[4] 형태의 다중 커널 병렬 구조로 확장한다.

Ⅱ. 모델 구조

2.1 입력 표현

입력 데이터는 길이 50-150nt 의 DNA 염기 서열로 구성되며, 각 염기는

원-핫 인코딩 이후 임베딩 벡터로 변환된다. 모델이 염기 간 상대적 위치

정보를 학습할 수 있도록 Relative positional encoding[5]을 적용하며, 이

를 통해 장거리 상호작용을 고려한 특징 학습이 가능하도록 한다. 이러한

입력 표현은 이후 Conformer 기반 백본의 self-attention 및 convolution

연산에 공통적으로 사용된다.

2.2 Conformer 기반 백본 구조

제안하는 모델의 전체 구조는 그림1 과 같이, 입력된 DNA 염기 서열을

Conformer 기반 백본을 통해 처리 후 완전연결층을 통해 자유에너지 값

을 출력하는 회귀 모델로 구성된다. Conformer 기반 백본은 다수의

Conformer 블록을 적층한 구조로, 각 블록은 Feed-forward network,

multi-head self-attention, convolution 모듈을 포함하며, 잔차 연결과 층

정규화를 통해 안정적인 학습을 유도한다. 본 연구에서는 Conformer 논

문에서 제안된 구조를 따르며, 이를 아래의 수식과 같이 정의한다.
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수식의 MHSA는 염기 서열 전반에 걸친 장거리 상호작용과 상보적 관계

를모델링하는 역할을수행하며, Conv는 연속적인염기 패턴으로부터국

소적인구조적특징을추출한다. 이러한두연산을단일블록내에서결합

함으로써 전역적 및 국소적 특징을 동시에 학습할 수 있다. 기존의

BiLSTM 기반모델과 달리, 제안하는 구조는순차 처리에 대한 의존성을

제거하고 병렬 처리가 가능하다는 장점을 가진다. 이로 인해 서열 길이가

증가하더라도 효율적인 학습과 추론이 가능하다.

그림 1. Conformer 기반 자유에너지 예측 스크리닝 모델 구조

2.3 Inception 기반 convolution 구조

Conformer 구조의 convolution 연산은 염기 서열 내 국소적인 연속패턴



을 모델링 하는 핵심 요소이다. 그러나 [3]논문의 Conformer 구조에서는

단일 커널을 사용한 convolution 연산을 통해 국소적 특징을 추출하므로,

서로 다른길이와 형태를갖는연속적인염기패턴을 동시에표현하는데

에는 한계가 존재한다. NUPACK의 MFE 계산은 특정 패턴에 의해 단독

으로결정되는 것이아니라다양한크기의 국소적상호작용이복합적으로

작용하여 계산된다. 따라서 MFE 예측을위해서는 단일수용 영역에기반

한 특징 추출보다, 서로 다른 수용 영역을 갖는 국소 패턴을 동시에 고려

하는 다중 스케일 모델링이 필요하다. 이를 위해 본 논문에서는

Conformer 블록 내부의 convolution 연산을 Inception 형태의 구조로 확

장한다. 제안하는 convolution 모듈의 구조는 그림2 와 같다.

그림 2. Convolution module 내부 구조

동일한 특징 맵에 대해 서로 다른 커널 크기를 갖는 다수의 convolution

filter를 병렬로 적용한다. 각 병렬 경로는 서로 다른 수용 영역을 가지므

로, 다양한길이의염기 패턴을 동시에 포착함으로써기존의단일커널기

반 Conformer 대비 복합적인 연속 패턴을효율적으로모델링할 수 있다.

Ⅲ. 모의 실험

학습 데이터셋은 길이가 50~150nt인 총 1.500.000개의 DNA 염기서열로

구성되며, GC-content(45~55%)와 homopolymer run(≤3)제약을 만족하

도록 무작위로 생성하였다. 각 서열의 MFE는 NUPACK을 통해 계산하

여 사용하였다. 테스트 데이터셋은 Microsoft 연구 그룹에서 공개한 실제

DNA 시퀀싱 데이터셋을 사용하였다. 해당 데이터셋은 길이 110nt의

DNA 염기 서열 10,000개로 구성되어 있고 MFE는 NUPACK을 통해 계

산되었다.

그림 3은 Epoch 별 모델의 결정계수 비교를보여준다. Conformer는 기존

BiLSTM-Transformer 모델 대비 약 0.1의 예측성능 향상을 달성하였다.

Conformer와 Conformer-inception을 비교하였을 때, 수렴 속도는

Conformer가 더 빠르지만 Conformer-inception이 더 높은 예측 성능을

보인다. 표1 은 각 모델의 최고 성능과 실행 시간을 보여준다. 제안하는

모델은 BiLSTM-Transformer 대비 파라미터 수가 다소 증가하였으나,

Conformer 구조는 순차적인 시간 의존성을 갖는 BiLSTM과 달리 병렬

연산이 가능한 구조를 갖기 때문에 서열길이가 길어져도 병목 현상이발

생하지 않는다.

Ⅲ. 결론

본 논문은 MFE 예측을 위한 Conformer 기반 딥러닝 모델을

제안하였다. 제안하는 Conformer-inception 모델은 NUPACK 기반 MFE

값을 효과적으로 근사하며 기존 순차 모델 대비 향상된 예측 성능을

보였다. 또한 병렬 처리가 가능한 구조적 특성으로 GPU 환경에서의학습

및추론과정에서효율적인병렬처리를가능하게하여향후대규모 DNA

서열 스크리닝과 같은 확장된 문제에 쉽게 적용이 가능하다. 향후에는

보다 더 높은 예측 성능을 위해 모델 구조 및 파라미터에 대해 추가적인

개선을 진행할 예정이다.

그림 3. Epoch별 모델 테스트 결과

모델 종류 결정계수 평균상대오차 파라미터 수 실행 시간(s)
BiLSTM-Transformer 0.8134 0.1073 862,837 0.0006089
Conformer 0.9033 0.0759 971,377 0.0006929
Conformer-inception 0.9075 0.0736 1,027,633 0.0007012
NUPACK 계산 0.0024308

표 1. 최고 성능 비교 결과.
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