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요 약  

 
본 논문에서는 의료 영상 분할을 위해 MedSAM 과 같은 대규모 파운데이션 모델을 활용할 때 무릎 X-ray 영상 특유의 

뼈 융기 구조로 인해 내측과 외측 관절 간극이 단절되거나 주변 근육 조직을 오인식하는 문제를 해결하기 위해 YOLOv8 

기반의 관심 영역(ROI) 검출과 해부학적 연결성에 기반한 후처리 알고리즘을 결합한 강건한 세그멘테이션 파이프라인을 

제안한다. 제안하는 방법은 MedSAM 의 초기 분할 결과에 대해 연결 요소 분석(Connected Component Analysis)을 

수행하고, 객체의 면적 비율을 기반으로 유의미한 관절 영역만을 병합한다. 실험 결과, 제안 기법은 기존 단일 모델 대비 

끊어진  관절  영역을  효과적으로  복원하고  배경  잡음을  제거하여  정밀한  마스크를  생성함을  확인하였다 . 

 

Ⅰ. 서 론  

고령화 사회로 진입함에 따라 퇴행성 무릎 골관절염 

환자가 급증하고 있으며, 이에 대한 조기 진단의 

중요성이 대두되고 있다. 임상 현장에서는 주로 X-ray 

영상을 통해 관절 간극의 협소화(Narrowing) 정도를 

관찰하여 Kellgren-Lawrence(KL) 등급을 판정한다[1]. 

정확한 판정을 위해서는 관절 간극 영역을 정밀하게 

분할하는 전처리과정이 선행되어야 한다. 최근 Segment 

Anything Model(SAM)[2]과 이를 의료 영상에 미세 

조정한 MedSAM[3]이 등장하며 높은 분할 성능을 

보여주고 있으나, 무릎 X-ray 영상에는 치명적인 구조적 

한계가 존재한다. 정강이뼈 중앙의 융기(Intercondylar 

eminence)가 관절 간극을 가로막고 있어, 딥러닝 모델이 

내측(Medial)과 외측(Lateral) 관절 공간을 서로 다른 

객체로 인식하거나 하나를 누락하는 현상이 발생하는 

것이다. 또한, X-ray 의 낮은 대비로 인해 주변 근육이나 

지방 조직이 관절로 오인식되기도 한다. 본 논문에서는 

이러한 문제를 해결하기 위해, YOLOv8[4]을 통해 관절 

중심부를 정밀하게 타격하고, 분할된 마스크 덩어리들의 

면적 비율을 분석하여 해부학적으로 타당한 영역만을 

재결합하는 후처리 알고리즘을 제안한다.  

 

Ⅱ. 본론  

2.1 YOLOv8 기반 ROI 자동 검출 및 초기 분할 

전체 X-ray 영상에서 불필요한 배경을 제거하고 관절 

간극에 집중하기 위해 객체 검출 모델인 YOLOv8 

Nano 를 활용한다. 우리는 52 장의 정예 

데이터셋(Golden Set)을 구축하여 모델을 학습시켰으며, 

이를 통해 관절 부위의 Bounding Box 를 검출한다. 

검출된 박스는 단순한 자르기(Crop) 용도뿐만 아니라, 

이후 MedSAM 모델에 입력될 위치 프롬프트(Box 

Prompt 및 Center Point Prompt)를 생성하는 기준으로 

활용된다. 이 단계에서 CLAHE(Contrast Limited 

Adaptive Histogram Equalization)[5]기법을 함께 

적용하여 뼈와 연골의 경계 대비를 강화함으로써 

MedSAM 의 초기 인식률을 극대화하였다. 

 

2. 2 해부학적 연결성 기반 후처리 알고리즘 

MedSAM 이 생성한 초기 마스크는 정강이뼈 융기 

구조로 인해 내측과 외측 관절 공간이 끊겨 있거나, 주변 

근육이 노이즈로 포함되는 한계가 있다. 이를 보정하기 

위해 본 논문에서는 연결 요소 분석(Connected 

Component Analysis)[6]기반의 후처리 로직을 제안한다. 

우선 초기 마스크 내의 모든 독립된 객체(Blob)를 

라벨링하고 각 객체의 면적을 계산한다. 그 후 가장 큰 

면적을 가진 객체 Α max 를 기준점으로 설정한다. 무릎 

관절의 해부학적 특성상 내측과 외측 공간은 비슷한 

크기를 가지게 되고, 이 기준 객체 면적의 20% 이상   

(Ai ≥  0.2 ∙ Α max) 인 덩어리는 유효한 반대쪽 관절 

영역으로 판단하여 병합(Merge)하고, 그 미만인 

덩어리는 근육이나 노이즈로 간주하여 제거한다. 이 

과정을 통해 물리적으로 분리되어 보이는 두 관절 

공간을 하나의 온전한 마스크로 복원한다. 

2. 3 실험 결과 및 분석 

본 연구의 유효성을 검증하기 위해 OAI(Osteoarthritis 

Initiative)[7] 데이터셋을 활용하여 비교 실험을 

수행하였다. [그림 1]은 기존 MedSAM 단일 모델과 

제안하는 후처리 기법의 결과를 비교한 것이다. 기존 

방식은 정강이뼈 융기에 의해 관절 간극이 좌우로 

분리되어 한쪽만 검출되거나, 관절 주변의 근육 조직이 



마스크에 포함되는 오류가 빈번하였다. 반면, 제안하는 

알고리즘을 적용한 결과, 분리되었던 내측과 외측 관절 

공간이 하나의 마스크로 정확하게 연결됨을 확인하였다. 

특히, 육안으로 구분이 모호한 근육 부위가 노이즈로 

검출되더라도, 면적 비율 임계값 필터링을 통해 

효과적으로 제거되었다. 이는 추가적인 모델 재학습 없이 

해부학적 지식 기반의 알고리즘만으로 분할 성능의 

강건성(Robustness)을 크게 향상시켰음을 의미한다. 

 

 
[그림 1] 해부학적 후처리 알고리즘 적용 전후의 마스크 

변화. 

(a) Original Image, (b) Raw MedSAM Output,  

(c) Proposed Method 

 

Ⅲ. 결론  

본 논문에서는 무릎 X-ray 영상에서 정강이뼈 융기 

구조로 인해 빈번하게 발생하는 관절 간극 

세그멘테이션의 단절 및 비관절 영역 오인식 문제를 

해결하기 위한 통합 파이프라인을 제안하였다. 제안하는 

프레임워크는 YOLOv8 을 이용한 정밀한 ROI 위치 

추정을 통해 분할 대상의 범위를 국소화하고, 대규모 

의료 영상으로 사전 학습된 MedSAM 의 강력한 일반화 

성능을 활용하여 초기 마스크를 생성한다. 여기에 본 

연구의 핵심인 해부학적 연결성 기반의 후처리 

알고리즘을 결합함으로써, 물리적으로 분리되어 보이는 

내측과 외측 관절 공간을 하나의 온전한 해부학적 

구조로 복원하는 데 성공하였다. 실험 결과를 통해, 제안 

기법이 단순히 딥러닝 모델에만 의존하는 것보다 도메인 

지식(Domain Knowledge)을 결합했을 때 노이즈 제거와 

형태복원 측면에서 월등히 우수한 강건성(Robustness)을 

보임을 입증하였고, 이로써 의료 데이터 구축 비용을 

획기적으로 절감할 수 있을 것으로 기대된다. 
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