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요 약

본 논문은 표면 코드 디코딩을 위한 CBAM(Convolutional Block Attention Module) 기반 신경망 디코더를 제안한다. 기존
CNN(Convolutional Neural Network) 기반 디코더 [3]는 모든 특징 채널과 공간 위치를 균등하게 처리하여 오류 분류에 중요한
특징을 선택적으로 강조하지 못한다는 한계가 있다. 이에 본 논문에서는 CBAM을 도입하여 채널 및 공간 주의 메커니즘을 통해
신드롬 패턴의 중요 특징을 선택적으로 강조하였고 기존 CNN 디코더 대비 향상된 논리적 오류율 성능을 달성하였다.

Ⅰ. 서 론

양자 컴퓨팅은 기존고전 컴퓨팅의 한계를뛰어넘는혁신적인계산 패러

다임으로 주목받고 있다. 그러나 양자 시스템의 본질적인 불안정성으로

인해 환경적 노이즈에 매우 취약하며, 이는 양자 정보 손실을 초래한다.

이러한 문제를 해결하기 위해 양자 오류 정정 코드가 필수적이며 그중에

서도표면 코드(Surface Code)는 2차원 격자구조의지역적상호작용만을

요구하여 실제 물리적 구현에 유리한 특성을 가진다. [1]

표면 코드의 디코딩 알고리즘으로는 전통적으로 최소 가중치 완전 매칭

(Minimum Weight Perfect Matching, MWPM) 알고리즘이 널리 사용되

어 왔다 [2]. 그러나 MWPM은 X와 Z 오류를 독립적으로 처리하여 Y 오

류에 취약하고 높은 계산 복잡도를 가진다. 최근에는 이러한 한계를 극복

하기 위해 딥러닝 기반의 디코딩 알고리즘이 활발히 연구되고 있다.

본 논문에서는 CNN(Convolutional Neural Network) 기반 디코더의 구

조 [3]를 기반으로 CBAM(Convolutional Block Attention Module) [4]을

통합한 새로운 디코더를 제안한다. CBAM은 채널 주의(Channel

Attention)와 공간 주의(Spatial Attention) 메커니즘을 순차적으로 적용

하여 신드롬 패턴에서 오류 위치 추정에 중요한 특징을 선택적으로 강조

한다. 이를 통해 제한된 네트워크 파라미터로도 더욱 효과적인 특징 추출

이 가능하며, 결과적으로 논리적 오류율 성능을 향상시켰다.

그림 1. CBAM 기반 디코더 아키텍처

Ⅱ. 제안하는 기법

A. 회전 표면 코드와 고수준 디코딩

본 논문에서 다루는 회전 표면 코드는 [[   ]] 파라미터를
가지는 위상적 안정자 코드로 코드 거리 에 따라⌊⌋개의
오류까지정정할수있다. 디코딩과정에서신드롬측정을통해오류를검

출하고 이를 기반으로 복구 연산자를 결정한다. 고수준 디코딩 알고리즘

은 신드롬을 4개의 논리 상태 (I̅, X̅, Y̅, Z̄̄̅) 중 하나로 분류하는 문제로 변

환하여네트워크출력크기를 코드 거리와무관하게고정할 수있다는 장

점이 있다.

B. 제안하는 CBAM 기반 디코더

본연구에서활용한 CBAM은입력 특징맵에대해 채널및 공간차원에

서 주의 가중치를 학습하는 경량 모듈로, 채널 주의는 오류 유형 식별에

중요한필터응답을 강조하고 공간 주의는오류발생 위치와 관련된 신드

롬 영역에 집중할 수있게 한다. 본 논문에서 제안하는 디코더는 CNN 구

조를 기반으로각 합성곱레이어뒤에 CBAM 모듈을추가하였다. 입력은

비일관적 값( )으로 패딩된 ×크기의 신드롬

격자이며, 두 개의 합성곱 레이어(필터 크기 (3,3), (2,2))를 거친다. 각 합

성곱레이어뒤에는배치정규화, ReLU 활성화함수, CBAM 모듈이순차

적으로 적용되며, 이후 밀집 레이어(50개 노드)와 출력 레이어(4개 노드)

를 통해 논리상태를분류한다. CBAM의 reduction ratio는 min(16, nf/2)

로 설정하고, 공간 주의의 커널 크기는 3으로 설정하여 계산 오버헤드를

최소화하였다.



그림 2 . CBAM 구조

Ⅲ. 모의 실험

탈분극 오류 모델(X, Y, Z 오류가 각각 p/3 확률로 발생) 하에서 코드

거리     인 회전 표면 코드에 대해 실험을 수행하였다. 신드롬 측

정은오류없이이상적으로수행된다고가정하였다. 비교 대상은MWPM,

FFNN(Feed Forward Neural Network) [5], CNN [3], 그리고 제안하는

CBAM 디코더이다. 모든 신경망은  개의 훈련 샘플로 100 에폭 동안
학습되었다. FFNN은 [5]의 설정에 따라 단일 오류율(p=0.09)로, CNN과

CBAM은 [3]의설정에따라다양한 오류율(0.06~0.13)을 혼합하여학습하

였다. 최적화에는 모멘텀 0.9의 SGD(Stochastic Gradient Descent)를 사

용하였고, 학습률은 에서 까지 적응적으로 감소시켰으며, 조기
종료를 적용하였다. 성능 지표로는 논리적 오류율(Logical Error Rate)을

사용하였다.

(a)

(b)

(c)

그림 3. 탈분극 오류 모델에서의 디코딩 성능 시뮬레이션 결과

(a) d = 3. (b) d = 5. (c) d = 7.

표 1. Pseudothresholds 비교

Depolarizing
Code distance 3 5 7
MWPM 0.0803 0.1024 0.1119
FFNN [5] 0.0967 0.1190 0.1091
CNN [3] 0.0963 0.1169 0.1217

Proposed CBAM 0.0969 0.1198 0.1300

표 2. 파라미터 비교

Code distance 5 7
CNN [3] 44,702 174,142

Proposed CBAM 45,122(+0.94%) 175,458(+0.76%)

Ⅳ. 결론

본 논문에서는 회전 표면 코드 디코딩을 위한 CBAM 기반 신경망 디코

더를제안하였다. 제안된 디코더는 채널 및공간주의메커니즘을통해오

류 분류에 유용한 특징을 선택적으로 강조하고, 비일관적 패딩 영역의 영

향을 억제하여 실제 신드롬 영역에 집중한다.

실험 결과,   에서는 모든 디코더가 유사한 성능을 보였으나, 코드
거리가 증가할수록 CBAM 디코더의 성능 향상이 명확해졌다. 이는 가능

한신드롬패턴 수가기하급수적으로증가하는환경에서 주의메커니즘이

제한된훈련데이터로부터 일반화가능한특징을효과적으로 학습하기때

문이다. CBAM 디코더는  미만의 파라미터 증가만으로 모든 코드 거
리에서 가장 높은 pseudothresholds를 달성하였으며, 특히   에서 기
존 CNN 대비 , MWPM 대비  향상된 성능을기록하였다. 이
는 주의 메커니즘이 양자 오류 정정 디코딩에 효과적으로적용될 수 있음

을 보여준다.
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