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요 약  

 
본 논문은 양자 저밀도 패리티 체크(QLDPC) 코드의 반복 디코딩에서, 신드롬 만족만으로는 논리 코셋을 보장하지 

못하는 양자 퇴화 특성을 반영한 학습 손실함수를 제안한다. BP4 실행 사이에 삽입되는 피드백 GNN 을 대상으로, 체크 

노드 신뢰도를 체크 결합 연산으로 정의하는 신드롬 손실과 확장 패리티 검사행렬을 이용한 퇴화 손실을 결합하여 

학습하였다. 실험 결과, 제안한 결합 손실은 신드롬 손실 단독 대비 논리 오류율을 추가로 낮추며, 기존에 제안되었던 

퇴화 손실 대비 안정적인 성능을 확인하였다. 

 

 

Ⅰ. 서 론  

양자 저밀도 패리티 체크(QLDPC) 코드는 패리티 검사 

행렬이 희소하여 복호 복잡도가 비교적 낮고, 대규모 양자 

오류 정정으로 확장하기에 유리하다는 점에서 유망한 후

보로 평가된다. 그러나 QLDPC 는 설계 제약으로 테너 그

래프에 짧은 사이클, 특히 4-사이클이 구조적으로 발생하

기 쉬워 신뢰전파(Belief Propagation: BP) 기반 디코딩에

서 메시지 상관이 누적되고 성능이 제한될 수 있다[1]. 이

러한 한계를 완화하기 위해, BP 출력 정보를 바탕으로 입

력 로그 우도비(Log Likelihood Ratio: LLR)을 조정하여 

복호를 재시도하는 후처리 방식들이 제안되었다. 예를 들

어 불만족 체크 정보를 이용해 섭동 방향을 강화하는 방

식은, 실패 패턴을 깨뜨려 BP 가 다른 해로 이동하도록 유

도하는 대표적 접근이다[2]. 더 나아가 메시지 전달 과정

에서 일부 안정자를 선택적으로 비활성화하여, 디코딩 그

래프의 대칭성으로 인해 발생하는 정체 현상을 완화하는 

기법도 연구되었다[3]. 다만 이들 방법은 휴리스틱 규칙 

설계에 의존하거나, 충분한 성능을 위해 여러 번의 시도를 

필요로 하여 지연이 증가할 수 있다는 한계를 가진다. 

최근에는 BP 실행 사이에 그래프 신경망(GNN)을 삽입

하여, 직전 BP 에서 얻은 posterior LLR 과 체크 신뢰도를 

활용해 다음 BP 의 prior LLR 을 데이터 기반으로 보정하

는 피드백 GNN 구조가 제안되었다[4]. 이 구조는 디코딩

의 핵심 연산은 BP 에 두면서도, QLDPC 의 비 이상적인 

디코딩 그래프(짧은 사이클, 대칭성)로 인해 발생하는 성

능 저하를 학습적으로 보상한다는 점에서 의미가 있다. 특

히 체크 결합(boxplus) 연산을 활용하면 BP 의 체크 업데

이트와 정합적인 방식으로 체크 만족도를 계산할 수 있어, 

학습 손실을 디코딩 구조와 일관되게 구성할 수 있다. 

한편 양자 부호는 서로 다른 오류가 동일 신드롬을 생

성할 수 있는 퇴화 특성을 가지므로, 신드롬을 만족하더라

도 잔여 오류가 논리 연산자 성분을 포함하면 논리 오류

가 발생할 수 있다. 따라서 “신드롬 일치”만을 학습 목표

로 두면 동일 신드롬 내에서의 논리 코셋 구분이 충분히 

학습되지 않을 가능성이 있다. 이를 반영하기 위해 퇴화를 

직접 학습 목표에 포함하는 퇴화 인지형 손실이 제안되었

으며, 이 과정에서 이진 제약을 미분 가능 형태로 완화하

기 위한 sine 기반 구성도 활용되었다[5]. 

본 논문은 피드백 GNN 학습에서 체크 결합(boxplus) 

연산 기반의 퇴화 손실을 새롭게 제안하고, 이를 기존 신

드롬 손실과 결합한 다중 손실(multi-loss) 로 학습하는 

방법을 제시한다. 제안 퇴화 손실은 잔여 오류가 안정자 

부분공간에 속하도록 하는 퇴화 조건을, Tanner 그래프의 

체크 결합 연산으로 얻은 체크 logit 에 대한 BCE 형태로 

구성함으로써, BP 의 체크 업데이트와 정합적인 방식으로 

학습 신호를 제공한다. 또한 기존의 sine 기반 퇴화 손실

[5]과 동일한 구조에서 비교하여, 손실 설계가 학습 안정

성과 논리 오류율에 미치는 영향을 정량적으로 분석한다. 

Ⅱ. 본론  

그림 1. 모델 구조 

 

2.1. 제안 방법 

본 연구는 이전 BP의 LLR(𝑙)을 입력으로 받아 다음 BP

에 사용할 LLR(𝑙′ )을 출력하는 피드백 GNN 을 학습한다. 

그림 1 은 학습 방법을 보여준다. 첫 번째 BP 를 16 

iteration동안 수행 후 변수 노드(VN)의 LLR을 GNN으로 

섭동하여 보정하고, 보정된 𝑙′를 입력으로 두 번째 BP(16 

iter)를 수행하는 구조이다. 



 

학습 손실은 두 번째 BP4 의 9~16 번째 iteration 에서 

매 iteration 종료 시 계산하여 모두 합산하였다. 손실은 

boxplus(⊞) 기반으로 구성하며, 신드롬 손실과 퇴화 손실

을 결합한 다중 손실을 사용한다. 

신드롬 손실 𝐿𝑠𝑦𝑛𝑑  는 측정 신드롬 𝑠 = (𝑠𝑋, 𝑠𝑍)에 대해 

𝐻𝑋ê𝑍  =  𝑠𝑋 및 𝐻𝑍ê𝑋   =  𝑠𝑍 (이진 연산 기준)을 만족하도록 

체크 만족을 직접 유도한다. 각 체크 𝑐𝑗에서 이웃 VN 메

시지의 LLR 을 boxplus 로 결합해 체크 logit ℎ𝑐𝑗
를 얻고, 

𝜎(ℎ𝑐𝑗
)가 목표값에 수렴하도록 이진 교차 엔트로피(BCE)

를 최소화한다. 식은 다음과 같다. 

𝐿𝑠𝑦𝑛𝑑 = ∑ 𝐵𝐶𝐸 (𝜎 (ℎ𝑐𝑗
) , 1 − 𝑠𝑗)

𝑗

(1) 

퇴화 손실 𝐿𝑑𝑒𝑔는 논리 코셋을 구분하기 위해 잔여 오류

(실제 오류와 디코더의 추정 오류의 차이: ê  ⊕  𝑒 )가 

stabilizer 부분공간에 속하도록 유도한다. 잔여오류가 안

정자 부분공간에 속한다는 걸 수식으로 표현하면, 검사행

렬을 확장한 𝐻⊥ = (𝐻𝑋
⊥, 𝐻𝑍

⊥)에 대해 𝐻𝑋
⊥(ê𝑋  ⊕  𝑒𝑋) = 0  및 

𝐻𝑍
⊥(ê𝑍  ⊕ 𝑒𝑍) = 0이 된다[4]. 이를 구현하기 위해 𝐻𝑋

⊥, 𝐻𝑍
⊥

로 가상의 테너그래프를 구성하고, VN 입력 LLR 로 잔여 

오류 (ê𝑋  ⊕  𝑒𝑋), (ê𝑍  ⊕ 𝑒𝑍)에 대한 LLR 을 주입한다. 해당 

그래프에서 체크 노드 업데이트를 수행하여 각 체크의 로

짓 ℎ𝑟
𝑋, ℎ𝑟

𝑍을 계산한 뒤, sigmoid 및 BCE 를 적용하여 모든 

체크가 만족되도록 손실을 구성했다. 전체 식은 다음과 같

다. 

𝐿𝑑𝑒𝑔 = ∑ 𝐵𝐶𝐸 (𝜎 (ℎ𝑐𝑗

𝑋 ) , 1)

𝑟∈𝑟𝑜𝑤𝑠(𝐻𝑋
⊥)

+  ∑ 𝐵𝐶𝐸 (𝜎 (ℎ𝑐𝑗

𝑍 ) , 1)

𝑟∈𝑟𝑜𝑤𝑠(𝐻𝑧
⊥)

(2)
 

 

최종 손실은 다음과 같이 신드롬 손실과 퇴화 손실의 가

중합으로 정의한다. 
𝐿𝑡𝑜𝑡𝑎𝑙 = 𝜆𝑠𝑦𝑛𝑑𝐿𝑠𝑦𝑛𝑑 + 𝜆𝑑𝑒𝑔𝐿𝑑𝑒𝑔 (3) 

여기서 𝜆𝑠𝑦𝑛𝑑는 신드롬 손실의 비중을, 𝜆𝑑𝑒𝑔는 퇴화

손실의 비중을 조절한다. 

 

2.2. 성능 평가 

 

 
그림 2. [[1270,28]] QLDPC 코드(16≤d≤46)에서의 논리 오류율 

 
성능 평가는 첫 번째 BP 를 64 회의 iteration 으로 수행

한 뒤 학습된 GNN 을 거쳐 수정된 𝑙′를 생성하고, 이 𝑙′을 

바탕으로 두 번째 BP 를 16 회 수행하여 진행했다. 

그림 2 는 depolarizing 채널에서 [[1270,28]] QLDPC 

코드(16≤d≤46)의 논리 오류율 성능을 보인다. 비교 항목

은 syndrome only, degeneracy only(sine/boxplus), 그리

고 syndrome+degeneracy(sine/boxplus)이며, 다중 손실

의 가중치는 boxplus 의 경우 (𝜆𝑠𝑦𝑛𝑑 , 𝜆𝑑𝑒𝑔) = (1.0,1.0), sine

의 경우 (1.0,0.05)로 설정하였다. 𝜆의 비율은 최고의 성능

일 때로 설정하였다. 퇴화 손실만 적용했을 땐, 체크 만족

을 직접 유도하지 못해 전 구간에서 오류율이 크게 증가

하였다. 반면 신드롬 손실에 퇴화 손실을 추가하면, 특히 

중간 물리 오류율 구간에서 논리 오류율이 더 낮아졌다. 

또한 동일한 결합 구조에서 boxplus 기반 손실은 sine 기

반 손실 대비 전반적으로 더 안정적이며 낮은 오류율을 

보였다. 

Ⅲ. 결론  

본 논문은 QLDPC 디코딩을 위한 피드백 GNN 학습에

서, 체크 연산 기반 퇴화 손실 함수를 제안하였다. 또한, 

신드롬 제약과 퇴화 제약을 결합한 다중 손실에서 좋은 

성능을 보임을 확인했다. 실험 결과, 신드롬 손실 단독 대

비 논리 오류율이 추가로 개선되었으며, 제안한 체크 연산 

기반 손실이 sine 기반 손실보다 안정적으로 동작하였다. 

향후에는 𝜆 가중치 최적화, 다중 시도 구조에 대한 단계별 

손실 설계를 통해 오류 마루 현상을 더 낮추는 방향을 연

구할 예정이다. 
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