True Decentralized Authorization for Digital Wallets: A Stateless Architecture
Using On-Chain DID Registries

Ghaylan Muhammad Fatih!, Ghazi Akmal Fauzan?, Hafidz Shidqi®, Dong Hwa Kim*, Jong Uk Choi®
MarkAny Inc.

{ghaylan!, ghazi®, hbandung®’}@ganeshait.com, {dhkim!, juchoi’}@markany.com

Abstract

In the evolving landscape of web security, traditional authentication models predominantly rely on centralized
authorities or Federated Identity Providers (IdPs) to validate user credentials. While effective for general access,
these “custodial” models necessitate identity silos, creating single points of failure and “digital honeypots”. The

emergence of Self-Sovereign Identity (SSI) offers a paradigm shift by returning control to the user. However,

integrating decentralized identity into standard RESTful web architectures presents significant implementation
challenges. This paper analyzes a Blockchain—backed Header Authentication & Authorization system implemented
within the GaneshaDCERT project. We propose a custom middleware architecture that intercepts standard HTTP
Authorization headers and resolves identity by querying an Ethereum-based smart contract (DIDManager). This flow
combines the ubiquity of the JWT standard with the security of W3C Decentralized Identifiers (DIDs), using the
blockchain as the immutable “Root of Trust” for public key resolution. Our empirical evaluation demonstrates that the
system achieves an end-to-end latency of 268.6 ms, sustains a throughput of 7,200 requests per second using
parallelized soft—state caching, and reduces operational costs by 88.8% compared to traditional [DaaS solutions.

I. Introduction

In the contemporary web security landscape,
traditional "custodial" authentication models—ranging
from simple password databases to Federated Identity
Providers (IdPs)—have created significant
vulnerabilities. These centralized systems act as
"digital honeypots," where a single breach can
compromise millions of users, and they enforce
"Identity Silos" that fragment a user's digital presence
across proprietary platforms. The Self-Sovereign
Identity (SSD paradigm addresses these issues by
decoupling verification from centralized registries
using Decentralized  Identifiers (DIDs) and
Decentralized Public Key Infrastructure (DPKI).

However, a critical gap exists in integrating these
decentralized standards with modern, stateless
RESTful web architectures. Developers face the
challenge of bridging standard token-based
authentication (like JSON Web Tokens) with the
immutable, distributed nature of blockchain—-based
trust.

This paper introduces a Blockchain—-backed Header
Authentication & Authorization system developed for
the GaneshaDCERT project. The primary contribution
is a custom middleware architecture that functions as

a bridge between Web 2.0 speed and Web 3.0 security.

By intercepting standard HTTP Authorization headers
and resolving identities against an Ethereum-based
smart contract, the system eliminates the server as a
single point of failure. This approach ensures that the
"Root of Trust" remains on the blockchain, while the
application layer remains stateless and efficient.

II. Method

Decentralized Authentication Sequence

Blockchain
== c=m )

{Phase 1: Request Generation |

Holder (User)

Generate JWT
[Payload: (iss: DID, ...})
<

Sign JWT with

Private Key (ES256)
S

HTTP Request = Headers
[Authorization: Bearer <JWT>]

{Phase 2: & ;
Intercept Request >
Decode JWT
(Extract "ss' DID)
-

getDIDDocument(dic) |
call getDIDDocument))
 Return (publickey, status, role)

< Return DID Document

Phase 3: Verification |

Check DID Status == 'Active’
<

[Calt )" (status Inactive]
401 Unauthorized

[Status Active]
Import PublicKey (P-256)
)
crypto verify(WT, PublicKey)
<

alt ) (Signature Invalid]

401 Unauthorized
[Signature Valid)
next()
(ARach user info)
Process Request

< 200 OK (Response) |
Holder (User) Blockchain
° o servee | e

[ ovever I 00 v

Fig. 1. Decentralized Authentication Sequence showing the
interaction between Holder, API Gateway, and Blockchain.

System Architecture: The proposed solution utilizes
a tripartite architecture designed to establish trust
without a central authority:
1. The Holder (Client): An entity possessing a DID
and a cryptographic key pair. The holder locally
signs requests using their private key.



2. The Verifier (API Gateway): A Node.js stateless
server acting as the GaneshaDCERT Gateway. It

validates credentials without storing user secret.

3. The Registry (Smart Contract): A generic
DIDManager smart contract on Ethereum that
maps DIDs to active public keys and roles
(Role-Based Access Control).

Cryptographic Protocol: The authentication flow
utilizes a non-interactive zero—knowledge pattern
based on modified JSON Web Tokens (JWT). The
token is self-signed by the user's private key using
the ES256 algorithm (ECDSA with P-256 and SHA-
256). Crucially, the JWT payload contains the iss
(Issuer) claim corresponding to the user's DID.

Middleware Logic and Implementation: The core
innovation 1is the verifyDIDSignature middleware.
Upon intercepting a request to a protected route:

1. Decoding: It decodes the JWT to extract the

DID.

2. Resolution: It queries the blockchain registry to

fetch the DID Document and active public key.

3. Verification: It verifies the ES256 signature

using the retrieved public key.

To address performance concerns (the "Blockchain
Trilemma"), the system implements Soft-State
Caching using Redis. While the "hard state" (truth)
resides on-—chain, the middleware caches resolved
public keys for a short TTL (e.g., 60 seconds). This
hybrid approach allows the system to bypass the
latency of repeated RPC calls for active sessions. The
backend is containerized via Docker and orchestrated
with Node.js in Cluster Mode to maximize multi-core
CPU utilization for cryptographic operations.

Empirical Evaluation: The system was stress—tested
against four research questions (Latency, Throughput,
Economics, Security).

1. Latency: The hybrid model achieved a mean
end-to-end latency of 268.6 ms. This is
significantly = faster than raw  on-chain
verification (~12s) and remains acceptable for
interactive user experiences.

2. 'Throughput: Utilizing parallelized soft-state
caching, the system sustained 7,200 requests
per second (RPS) before CPU saturation,
proving scalability for enterprise workloads.

3. Economics: By offloading authentication to gas—
free read operations (eth_call), the system
reduces operational costs by 88.8% compared
to traditional IDaaS providers (e.g., AuthO),
shifting costs from high—frequency logins to
low-frequency revocation events.

4. Security: Addressed the "Time-to—Ban"
propagation delay inherent in blockchain. By
utilizing the pending block tag during RPC calls,
the system achieved an optimistic revocation
detection time of 1.5 seconds (vs. 12-24s for
standard blocks), effectively mitigating the
vulnerability window for standard sessions.

III. Conclusion

This study validates that a hybrid architectural
framework can successfully reconcile the performance
demands of modern web applications with the
principles of Self-Sovereign Identity. The
GaneshaDCERT  system demonstrates that the
"Stateless Middleware" pattern is a production—ready
alternative to OIDC.

By shifting authentication logic from stateful session
stores to stateless cryptographic verification backed
by an on-chain registry, the system eliminates digital
honeypots and operational silos. The empirical results
confirm that the cryptographic overhead is negligible
when managed with appropriate caching strategies,
achieving sub—second latency and high throughput.

Future work will focus on integrating Layer—2
scaling solutions (Optimism, Arbitrum) to further
reduce revocation costs and implementing Zero—
Knowledge Proofs (ZKPs) to enable privacy-
preserving "Selective Disclosure" of attributes.

ACKNOWLEDGMENT

This research was supported by MarkAny Inc. and the
GaneshaDCERT project team. We thank the reviewers for
their insightful comments which improved the quality of this
paper.

REFERENCES

[1] C. Allen, “The Path to Self-Sovereign Identity,” Life
With Alacrity, 2016.

[2] M. Sporny, D. Longley, and M. Sabadello, “Decentralized
Identifiers (DIDs) v1.0,” W3C Recommendation, Jul. 2022.

[3] M. Jones, J. Bradley, and N. Sakimura, “JSON Web
Token (JWT),” IETF RFC 7519, May 2015.

[4] C. Allen et al., “Decentralized Public Key Infrastructure
(DPKD),” Rebooting the Web of Trust, 2015.

[5] B. Schneier, “Data and Goliath: The Hidden Battles to
Collect Your Data and Control Your World,” W. W. Norton
& Company, 2015.

[6] D. Fett, R. Kiisters, and G. Schmitz, “Privacy-Preserving
OpenID Connect,” in Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications
Security (CCS "17), 2017.

[7] GaneshaDCERT Team, “GaneshaDCERT: Decentralized
Certificate Management System,” Project Repository,
2025.

[8] M. Westers et al., “SSO-Monitor: Fully-Automatic
Large-Scale Landscape, Security, and Privacy Analyses
of Single Sign-On in the Wild,” arXiv preprint
arXiv:2302.01024, 2023.

[9] A. Muhle, A. Griner, T. Gayvoronskaya, and C. Meinel,
“A Survey on Essential Components of a Self-Sovereign
Identity,” Computer Science Review, vol. 30, pp. 80~ 86,
2018.

[10] K. Yan, X. Zhang, and W. Diao, “Stealing Trust:
Unraveling  Blind  Message  Attacks in  Web3
Authentication,” arXiv preprint arXiv:2406.00523, 2024.



