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요 약

시맨틱 비디오 통신은 비디오를 그대로 전송하는 대신 장면 의미를 유지하는 잠재 표현을 전달하고, 수신단에서 이를 조건으로 프레임을 합성 및
복원함으로써 초저비트율 환경에서도 체감 품질을 유지하려는 새로운 통신 방식이다. 최근에는 일반 장면에서 더 높은 복원 품질을 얻기 위해 확산
모델 기반 생성형 모델이 시맨틱 비디오 통신에 본격적으로 적용되고 있다. 그러나 확산 모델은 다단계 denoising 반복으로 계산량이 커 실시간 전송
시나리오에서 적용이 제한된다. 본 논문은 이를 완화하고 실시간성을 확보하려는 연구들을 두 가지 흐름으로 정리한다. 첫째, 이전 프레임과 모션 등
직전정보를활용해초기노이즈를유리하게만들고역확산구간을단축하는추론가속접근이다. 둘째, 참조 프레임을앵커로고정한뒤이후 프레임은
변화분 중심으로 복원하여 생성범위를줄이는 앵커기반 생성최소화접근이다. 또한 큰모션과장면 전환처럼 프레임간 상관이낮아지는구간에서는

초기 노이즈와 앵커의 신뢰도가 저하될 수 있음을 한계로 주목하고, 이를 보완하기 위한 후속 연구 방향을 논의한다.

Ⅰ. 서 론

시맨틱 비디오 통신은원 신호의완전복원보다장면의 의미를유지하는

잠재표현을 추출해전달하고수신단에서조건부 생성으로프레임을합성

및 복원함으로써, 초저비트율 환경 및 열악한 채널 조건에서도 유의미한

시각 정보와 체감 품질을 유지하려는 기술이다 [1]. 초기 시맨틱 비디오

통신은 화상회의와 같이 대상과 변형 양상이 제한된 도메인에 주로 적용

되었으며, 키포인트나 랜드마크와 같은 명시적 시맨틱을 전송한 뒤 이를

기반으로 프레임을 생성하는 방식이다 [1, 4]. 그러나 실제 비디오 트래픽

의다수는특정객체에국한되지않는콘텐츠로구성되며, 장면 구조와객

체 간 관계가 복잡하게 얽혀있는 양상을 보인다. 이때 명시적 시맨틱만으

로는 배경 구조, 객체 경계, 상호작용과 같은 비디오 생성에 필요한 핵심

단서를보존하기어려우므로, 시맨틱비디오통신은도로, 도시, 실외 환경

등 객체와 구조가 복잡한 일반 장면으로 확장될 필요가 커졌다.

일반 장면 확장에서 핵심으로 부각된 접근이 생성형 시맨틱 통신

(generative semantic communication, GSC)이다 [1]. GSC는 프레임에서

시맨틱 맵을 추출해 전송하고, 수신단에서 생성 모델을 구동해 프레임을

재구성한다 [2]. 기존에는빠른추론 속도를 바탕으로생성적적대 신경망

기반 조건부 합성이 주로 활용되어 왔다 [2, 5]. 그러나 일반 장면에서는

세밀한 구조 보존과 안정적인 합성이 동시에 요구되며, 단일 조건이나 제

한된 변형을 가정하는 합성은 시각적 왜곡과 시간적 불안정을 야기하기

쉽다 [4]. 이 때문에 최근 GSC에는 확산모델 기반 합성이 본격적으로 도

입되고 있다 [1, 2, 4]. 확산모델은 단계적 복원 과정을 통해 복잡한 객체·

텍스처·구조를더정교하게재현하는 경향이있고, 이전 프레임참조와프

레임, 잔차, 모션과 같은 다중 조건을 결합한 조건부 생성에서도 높은 표

현력과 설계 유연성을 제공한다 [2, 3, 4]. 그 결과 일반 장면에서 더 높은

품질과 더 자연스러운 프레임 생성을 기대할 수 있다.

그러나 확산모델을 사용하는 GSC에서 지속적으로 지적받는 문제는 반

복되는 denoising 과정으로 인한높은 계산량이며, 이는 곧저지연·실시간

전송 시나리오에서의 적용 가능성을제한한다 [1, 2, 4]. 특히 시맨틱 비디

오 통신은 수신단 합성 과정이 전송 주기와 결합되므로, 생성 지연은 곧

시스템 지연으로 누적된다. 따라서확산 기반 GSC의 성능을논할 때에는

품질만이 아니라, 제한된 시간 예산 내에서 프레임을 복원할 수 있는가를

고려해야한다.

본 논문은확산 모델의초기 노이즈를 정교화하여 확산추론을가속화하

는접근과참조프레임을앵커로사용해생성자체를최소화하는접근, 두

가지로 정리하여 확산 기반 GSC의 실시간성을 고려한 최신 연구를 소개

한다.

Ⅱ. 본 론

Ⅱ-1. 초기 노이즈 정교화 기반 확산 추론 가속

확산모델 기반 GSC에서 계산 병목은 denoising 반복에 의해 발생한다.

이를 완화하기 위한 한 흐름은 처음부터 순수 잡음에서 시작해긴 역확산

을수행하는대신, 직전 정보로초기노이즈를만들거나추론경로를짧게

유도해 필요한 denoising 스텝 수를 줄이는 방식이다. 이 절에서는 초기

노이즈 정교화 관점에서 확산 추론을 가속화하는 연구를 정리한다.

[2]에서는 denoising 스텝을 줄이는 ControlVideo-SemCom (CVSC)를

소개한다. CVSC는 수신단이 주기적으로 수신 및 복원의 기준 프레임을

두고, 프레임 간 모션을 누적해 기준 프레임의 각 위치가 현재 시점에서

어디로이동해야하는지를 추정한 뒤기준프레임을현재시점좌표로 정

렬해현재프레임에가까운초기노이즈를만든다. 이후 이초기노이즈를



특정 노이즈 수준까지 변형한 상태에서 denoising을 시작하도록 구성해,

매 프레임을 순수 잡음에서 새로 생성하지 않고 짧은 역확산구간에서잔

여 왜곡과 세부 성분만 복원하도록 만든다. 결과적으로 초기 노이즈 정교

화해 역확산 구간을 단축하고 계산 부담을 줄인다.

[3]에서는 프레임 간 모션 일관성을 이용해 확산 추론을 가속하는

Denoising Reuse를 제안한다. 한 기준프레임에대해서만확산 백본을끝

까지 수행해 각 denoising 단계의 중간잠재표현을 미리 저장해두고, 나

머지 프레임은 모션 특징으로 기준 프레임의 해당 단계 노이즈와 잠재를

정렬해 이후 단계만 denoising 하도록 만든다. 전환 스텝은 모션 크기에

따라 적절한 지점을 선택하며, 모션 네트워크와 전환 스텝 선택기를 두어

초기 구간의 계산을 건너뛰면서도 후반 구간에서 품질이 유지된다.

Ⅱ-2. 앵커 프레임과 변화분 복원으로 생성 최소화

확산모델기반 GSC에서 실시간성을고려한또 다른 접근법은 매프레임

을 새로 생성하기보다 참조 프레임을 앵커로 고정하고, 이후 프레임은 앵

커 대비 변화분만 복원하도록 생성 범위를 축소하는 방식이다. 이 절에서

는 앵커 기반으로 생성과 복원을 최소화하는 연구를 정리한다.

[4]에서는 Wireless Video Semantic Communication with Decoupled

Diffusion Multi frame Compensation (WVSC-D)를 제시한다.

WVSC-D는 비디오를 구간으로 나누고 구간의 첫 시맨틱 l 프레임을 참

조 앵커로 전송한 뒤, 구간 내 나머지 프레임은 l 프레임 대비 변화분을

잔차로 표현해 전송한다. 수신단은 앵커로 구간 내에서 공유되는 기본 장

면구조를확보하고, 복원 과정에서는참조성분과잔차성분을분리해앵

커의 구조는 유지하면서 프레임별 고유한 변화가 복원되도록 구성한다.

[5]에서는 Content Frame Motion Latent Diffusion Model (CMD)를 제

시한다. CMD는비디오를콘텐츠 프레임과모션잠재표현으로 분해해생

성 대상을 줄인다. 오토인코더가 입력 비디오를 콘텐츠 성분과 모션 성분

으로 인코딩하며, 콘텐츠 프레임은 프레임별 중요도를 학습해 여러 프레

임을 가중결합한 형태로구성되어 비디오 전체의 기준이 되는 앵커로사

용된다. 생성 단계에서는사전학습된이미지 확산모델로 콘텐츠 프레임을

먼저 생성해 장면의 기본 외관을 고정하고, 별도의 경량 확산모델로 모션

잠재 표현만 추가로 생성한다. 이후 디코더는 콘텐츠 프레임이 제공하는

공간적 기반 특징과 모션잠재표현이 제공하는 시간적변화특징을 결합

하여 전체 프레임열을 복원한다.

Ⅱ-3. 프레임 상관 저하 구간에서의 신뢰도 판단과 앵커 갱신 한계

표 1에서 보듯, 실시간성을 목표로 한 확산 기반 GSC 연구들은 이전 정

보로초기 노이즈를유리하게만들거나앵커 프레임을기준으로변화분만

복원하는구조를택한다. 그러나대부분인접프레임간높은중복을전제

로추론시간단축에집중하며, 큰 모션이나장면전환처럼프레임상관이

급격히 낮아지는 구간과 그에 따른 불확실성은 충분히 고려하지 않는다.

하지만 실시간 시나리오에서 감지와 불확실성 추정은 부가 기능이 아니

라, 고정된 시간 예산 안에서 실패를 제어하기 위한 필수 요소다. 큰 모션

과장면전환은정렬기반초기화와앵커기반변화분복원가정을동시에

무너뜨리며, 신뢰도판단없이동일한스텝수와보정강도를적용하면품

질 저하가 급격히 발생하거나 오류가 누적되어 안정적인 서비스 품질을

보장하기 어렵다.

요약하면, 실시간성을 위한 연구들은 정상 구간에서는 매우 효율적이다.

그러나 큰 모션과 장면 전환처럼 프레임 간 상관이 낮아지는 구간에서는

초기 노이즈와 앵커의 신뢰도를 판단하기 어렵고, 특정 상황에 맞게 기준

을 재설정하는 메커니즘을 다루지 않았다. 따라서 후속 연구에서는 전환

감지, 모션 불확실성 추정, 적응적 스텝 수 조절, 앵커 갱신 정책 같은 시

스템 수준의 보완이 핵심 과제로 이어져야 한다.

Ⅲ. 결 론

본 논문에서는 확산모델 기반 GSC에서 실시간성을 확보하기 위한 관련

연구를 소개하였다. 해당 접근은 초기 노이즈 정교화를 통한 추론 가속과

앵커 기반 생성 범위축소로 구분할 수 있다. 향후에는큰 모션과장면전

환구간에서도안정적으로 동작하도록전환감지와적응적 제어를포함한

시스템 수준의 보완이 필요할 것이다.
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실시간성 연구 기법 [2] [3] [4] [5]

확산 추론 가속 O O X X

생성 최소화 X X O O

큰 모션/장면 변화 감지 X X X X

불확실성 추정 X X X X

품질 저하 안전 장치 O O X X

표 1. 확산모델을 사용하는 GSC 실시간성 연구 비교


