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parameter Value
. BPSK, QPSK, 8PSK, 16QAM,
Modulation schemes
32QAM, 64QAM
Channel model TDL-D
Carrier frequency 6 GHz
Subcarrier spacing 15 kHz
SNR range 0-15 dB
Delay spread 30-300 ns
Velocity 30-150 km/h
FFT size 64
Batch size 64
Maximum epochs 100
% 2. Frly 5
Model Total parameters
CNN-GRU 36,198
GRUformer 1,294,406
Transformer 1,159,974
ResNet1D 3,847,430
LSTM 676,678
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