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요 약

블록체인 네트워크에서 블록과 트랜잭션의 전파 효율은 블록의 메인 체인 포함 여부와 non-canonical block 발생에 직접적인 영향을 미친다. 그러나
기존의단순통신지표 기반 피어 선택 방식은 지속적인 지연, 불안정, 또는 Free-riding 패턴을 효과적으로 구분하지못한다. 본 논문에서는전파효율
에 부정적인 영향을 미치는 피어를 식별하기 위해, 단일 패킷 기반 LLM 분류와 이를 집계한 피어 평가 기법을 제안한다. 제안 기법은 패킷 헤더 및
전파 과정에서 수집된 메타데이터를 문장 기반 입력으로 변환하고, 각 패킷을 정상, 지연, 불안정, Free-riding 상태로 확률적으로 분류한다. 패킷 단위
분류 결과는 시간 구간 단위로 집계되어 피어의 전반적인 전파 패턴을 반영하는 평판 점수로 갱신된다. 실험 결과, 제안 기법은 단일 패킷 분류에서
99.1%의 정확도를 달성하였다. 이는 기존의 단순 지표 기반 또는 무작위적 피어 선택 방식에서 나아가, 전파 과정에 실질적으로 기여하는 피어를 식별
함으로써 보다 효율적인 전파 환경을 구성할 수 있음을 보여준다.

Ⅰ. 서 론

블록체인네트워크에서전파 지연(Propagation Delay)은 블록이 메인체

인(Canonical Chain)에 포함될확률을좌우하는 핵심요인이다. 탈중앙화

환경에서 노드는 보상을 위해 블록 생성·전파에 경쟁하며, 전파가 지체될

수록 유효 블록이더라도 채택 가능성이 낮아진다. 전파가 지체될 경우 유

효한 블록이라 하더라도 non-canonical block으로 처리되어 보상을 얻지

못하게 된다 [1]. 블록체인 네트워크는 P2P(gossip) 통신을 통해 빠른 전

파를 목표로 설계되지만, 전파에 기여하지 않는 패턴을 보이는 피어가 선

택될 경우 블록 전파 과정에서 병목이 발생할 수 있다 [2]. 기존 블록체인

클라이언트는 RTT(Round Trip Time)와 같은 단순한 통신 지표를 기준

으로 피어를 선택하기 때문에, 시간에 따라 누적되는 전파 패턴의 차이를

효과적으로 구분하지 못하는 한계를 가진다 [3].

본연구에서는, 전파효율에부정적인영향을미치는피어를정확하게식별하기

위한패킷단위학습기반접근법을제안한다. 노드간패킷교환로그를기반으로

전파패턴을학습·구분함으로써, 단일지표기반피어평가의한계를보완한다.

Ⅱ. 제안 기법

본 장에서는 전파 효율 저하 피어를 식별하기 위한 제안 기법의 구조를

설명하고, 패킷 단위 분류와 피어 단위 판단 절차를 제시한다.

Ⅱ-Ⅰ. 제안 기법 구조

각노드는이더리움블록체인의시간구간별패킷로그에서전파관련특징

을 추출한 뒤, Lightweight Transformer-based Model(DistilBERT [4])로

단일패킷을정상·지연·불안정·Free-riding [5]의 4개상태로분류한다. 패킷

수준의 분류 결과는 시간 구간 단위로 집계되어 피어 단위의 전파 패턴을

평가하는 데 활용된다. 패킷 단위 추론과 피어 단위 판단을 분리함으로써,

일시적 변동에 덜 민감하게 전파 기여도가 낮은 피어를 식별할 수 있다.

Ⅱ-Ⅱ. 패킷 전파 패턴 분류 기준

DistilBERT은 단일 패킷을 대상으로 정상, 지연, 불안정, Free-riding의

네 가지 전파 상태 중 하나로 분류한다. 각 상태는 패킷 전송 지연 수준,

전송 안정성, 재전파 여부를 포함하여, 패킷 헤더 및 전파 과정에서 나타

나는 다양한 특성을 종합적으로 반영하여 정의된다.

Ⅱ-Ⅲ. 패킷 분류 결과의 피어 단위 평가

패킷 수준에서 도출된 분류 결과는 피어 단위의 전파 패턴을 평가하기

위한입력으로활용된다. 일정 시간구간동안동일피어와교환된패킷들

의 분류 결과를 집계함으로써, 해당 피어가 전파 과정에서 보이는 전반적

인 특성을 추정한다. 이때 패킷 분류 결과는 단순 빈도 계산이 아니라, 시

간에따른누적과갱신을통해해석된다. 이를 통해일시적인네트워크변

동으로 인해 피어가 과도하게 부정적으로 평가되는 것을 방지하며, 전파

에 기여하지 않는 피어를 안정적으로 식별할 수 있다.

Ⅲ. 성능 평가

Ⅲ-Ⅰ. 문장 기반 패킷 표현 및 단일 패킷 분류 정의

[표 1. 패킷 종류]

DistilBERT 패킷 분류 모델의 성능 평가를 위해, 블록체인 네트워크에

서발생하는패킷을 문장 형태로표현하는방법과 단일 패킷 분류 결과의



정의 및 라벨링 방식을 설명한다.

패킷들은 사전에 정의된 템플릿에 따라 하나의 문장으로 직렬화되며, 이

는 단일 패킷의전파상태를판단하기 위한최소단위입력으로 사용된다.

단일 패킷 가 주어질 때, DistilBERT의 출력은 다음과 같은 상태별 확
률 벡터로 정의된다.     
여기서 ,,,는 각각 정상, 지연, 불안정, Free-riding 상태를 의미하
며, 각 확률은 다음 조건을 만족한다.∈  
이와 같이 DistilBERT는 단일 패킷에 대해 상태별 확률 분포 형태의 분

류 결과를 출력하며, 해당 결과는 이후 시간 구간 단위로 집계되어 피어

단위 전파 패턴 판단에 활용된다.

Ⅲ-Ⅱ. 비교 기법 및 평가 설정

DistilBERT를 기반으로 한 본 연구의 분류 기법을, 기존의 규칙 기반 및

학습 기반 분류 방식과 비교한다.

표 2는 각 기법의 단일 패킷 분류 성능을 비교한 결과를 나타낸다. 제안

한 DistilBERT 기반 분류 기법은 정확도 99.1%와 F1-score 98.8%를 기

록하여 모든 비교 기법 대비 가장 우수한 성능을 달성하였다.

Ⅲ-Ⅲ. 패킷 집계 기반 피어 단위 판단

단일 패킷의 전파 상태를 DistilBERT로 분류한뒤, 시간 구간 단위로 결

과를 집계·누적하여 피어의 전파 패턴을 판단한다.

피어 B에 대해 시간 구간 t 동안 기록된 패킷의 개수를 N_t라 할 때, 해

당 구간에서의 상태별 확률 벡터 p_t는 다음과 같이 정의된다.

     
시간 구간 t에서 계산된 상태별 확률 벡터 p_t를 기반으로, 피어의 전파

기여도를 나타내는 평판 점수 S_t는 다음과 같이 갱신된다.   ⋅
여기서 S_{t−1}은 이전시간구간의피어 평판 점수이며, α ∈ (0,1)은 최

신구간의반영 비율을 나타낸다. w는 상태별전파 기여도를반영하는가

중치 벡터로, 정상, 지연, 불안정, Free-riding 상태 순으로 감소하도록 설

정된다. 갱신된 평판 점수  를 기준으로, 피어는 다음과 같이 분류된다.
   ≥  

Free-riding 패턴은 단순한 성능 저하와 구분되어야 하므로, 본 연구에서

는 별도의 규칙 기반 판정을 적용한다. 시간 구간 동안 Free-riding 상태
로 분류된 패킷의 개수는 다음과 같이 정의된다.

   argmax  

만약 ≥를 만족할 경우, 해당 피어는 평판 점수와 무관하게

Free-riding 피어로 판정되며, 이후 전파 대상에서 제외된다.

[그림 1. 패킷 집계 기반 시간별 피어 점수 변화]

그림 1은 시간 구간에 따른 피어 점수 변화를 통해, Free-riding 패턴이

발생한피어의 점수가급격히 감소하며 정상 피어 및 불안정 피어와 명확

히 구분되는 과정을 보여준다.

Ⅳ. 결론

본논문은블록체인 네트워크에서전파효율을저해하는 피어를식별하기

위해, 패킷 로그를 문장기반입력으로변환해 DistilBERT로 분류하고그

결과를집계하는피어평가기법을제안하였다. 이를 통해단일통신지표

만으로는 구분하기 어려운 전파 특성의 차이를 반영한다. 정량 평가에서

제안한 DistilBERT 기반 분류는 단일 패킷 기준 정확도 99.1%와

F1-score 98.8%를 달성했으며, 규칙기반및 기존학습기반 기법보다우

수한 성능을 보였다. 또한 Free-riding 시작 시점(t=15) 이후 해당 피어의

평판 점수는 80 이상에서 20 이하로 급락한 반면 정상 피어는 80 이상을

유지하여, 점수 기반누적평가가일시적변동과지속적전파비기여패턴

을구분할수있음을확인했다. 본 접근법은추가적인프로토콜변경없이

기존이더리움환경에적용가능하며, 향후피어선택정책과의결합을통

해 전파 효율 향상으로 확장될 수 있다.
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