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요 약  

 
무선 통신 시스템의 송신단 핵심 소자인 전력 증폭기(Power Amplifier, PA)는 신호를 증폭하여 원거리까지 전송하는 

역할을 수행한다. 그러나 PA 의 동작 과정에서 발생하는 비선형 특성은 신호 품질 저하와 에너지 효율 감소의 원인이 

된다. 이러한 문제를 해결하고자 비선형성 보정을 위한 디지털 사전왜곡(Digital Predistortion, DPD) 연구가 활발히 

진행되어 왔으며, 그 기법이 메모리 다항식(Memory Polynomial)부터 인공신경망(Neural Network) 모델로 고도화되었다. 

PA 의 메모리 효과는 현재 입력 신호뿐만 아니라 과거 입력 신호의 히스토리 때문에 증폭기 특성이 변하거나 비선형 

왜곡이 발생하는 현상으로, 본 논문에서는 긴 시퀀스의 과거 데이터를 입력으로 받아 효과적으로 보상할 수 있도록 

트랜스포머(Transformer) 기반 DPD 모듈을 제안한다. 이를 통해 장기 메모리 효과(Long-Term Memory Effects)를 

효과적으로 보상하며 비선형 보정 성능을 크게 개선하였다. 실험 결과, 제안하는 모델은 기존 SOTA(State-of-the-art) 

모델인 DeltaGRU-tcnskip 대비 EVM 은 3.34 배, ACLR 은 2.48 배 향상된 성능을 보였다. 

 

Ⅰ. 서 론  

6G 및 5G Advanced 환경 등 무선 통신 시스템에서 

전력 증폭기(Power Amplifier, PA)는 전송 거리 확보, 

신호 대 잡음비(Signal-to-Noise Ratio, SNR) 유지, 

효율적인 에너지 사용 등의 통신 품질을 결정하는 가장 

중요한 부품 중 하나로 꼽힌다. PA 는 에너지 효율 

극대화를 위해 주로 포화 영역(Saturation Operation 

Point) 근처에서 동작 시키지만, 비선형(Non-linear) 

특성이 나타나고 파형의 왜곡이 발생한다. 이러한 PA 의 

비선형성에 의해 신호가 변질되어 오차 벡터 크기(Error 

Vector Magnitude, EVM)를 악화시키고 인접 채널 

간섭(Adjaenct Channel Interference)을 일으킨다.[1] 

PA 의 비선형 왜곡 문제를 해결하기 위해 디지털 

사전왜곡(Digital Predistortion, DPD) 모듈을 사용한다. 

DPD 는 PA 의 비선형 특성과 정반대되는 역특성을 입력 

신호에 미리 적용함으로써, 최종 출력에서 선형성을 

확보하는 원리를 가진다. 최근 복잡한 환경에서의 PA 의 

메모리 효과(Memory Effect)를 모델링하기 위해 딥러닝 

기법을 사용하는데, 특히 시계열 데이터 처리에 강점을 

가진 순환 신경망(Recurrent NN) 기반의 DeltaGRU[2] 

모델이 SOTA 성능을 입증하였다. 그러나 RNN 모델은 

순차 처리에 의해 연산 병렬화에 한계가 있으며, 장기 

의존성(Long-term dependency) 문제로 인해 정보 

손실이 발생할 수 있다. 반면, Transformer[3] 기반 

신경만은 셀프 어텐션(Self-Attention) 메커니즘을 통해 

입·출력 데이터 간의 상관관계를 병렬적으로 

분석함으로써 연산 효율성을 높이고, 더욱 복잡한 비선형 

메모리 효과를 정밀하게 모델링하는 데 탁월한 장점을 

보인다. 이에 본 논문에서는 기존 GRU 기반 모델의 

한계를 극복하고 비선형 보정 성능을 극대화하기 위한 

Transformer-based DPD 구조를 제안한다. 

 

Ⅱ. 본론  

본 장에서는 Transformer-based DPD 아키텍처와 그 

성능 검증 결과를 기술한다. 

1. Transformer-based DPD 모델 

제안하는 모델의 상세 아키텍처는 그림 1(b)에 나타나 

있다. 신호 처리(Signal Processing), 트랜스포머 

인코더(Transformer Encoder), 그리고 최종 출력단인 

완전 연결 계층(Fully Connected Layer)으로 구성된다.  

1.1) 입력 신호 처리 및 임베딩: Signal Processing 은 

[𝐼𝑡 , 𝑄𝑡]  쌍으로 표현되는 입력 신호로부터 특징을 

추출한다. 식 (1)의 입력 데이터는 memory depth 

𝑀 만큼의 과거 시점 데이터와 이들의 진폭( |𝑥𝑡| ), 삼각 

함수 항( sin𝜃𝑡 , cos𝜃𝑡 ) 등을 포함하는 식 (2)의 형태로 

증강되어 DPD 모델 입력으로 사용된다. 이 증강된 

시퀀스 데이터는 Input Embedding 과 Positional 

Encoding layer 를 거쳐 트랜스포머 인코더에 

입력된다.[3] 

표 1. 모델에 따른 DPD 의 성능 비교 

그림 1. 제안하는 Transformer-based DPD 아키텍처 
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1.2) 트랜스포머 인코더: 그림 1 (c)는 트랜스포머 

인코더 블록의 상세 구조를 보여준다. 먼저 MHA는 입력 

시퀀스 내의 다양한 위치에 있는 정보로부터 관계성을 

학습한다. 𝑑𝑚𝑜𝑑𝑒𝑙 = 6을 𝑛ℎ𝑒𝑎𝑑 = 2개의 헤드로 분할하여 

병렬 처리한다. 이는 PA 메모리 효과의 복잡한 비선형적 

의존성을 포착하는 데 효과적이다. 다음으로 FFN 에서 

기존 연구[3]의 단순 선형 계층(Linear layer) 방식 대신, 

locally feature extraction 능력을 강화하기 위해 

Conv1D 를 사용한다. 이를 위해 두 Conv1D 연산에서 

𝑑𝑓𝑓 = 10 의 차원으로 처리한다. 또한, 전체 모델의 

복잡성을 줄이고 실시간 DPD 연산의 효율성을 확보하기 

위해 단일 트랜스포머 레이어(𝑛𝑙𝑎𝑦𝑒𝑟 = 1)만을 사용하였다. 

1.3) 완전 연결 계층: 트랜스포머 인코더를 거쳐 

출력된 특징 맵은 최종적으로 원하는 출력 신호를 

생성하기 위해 두 개의 FC layer 를 통과한다. FC layer 

1 은 인코더의 최종 출력 텐서를 flattening 한 후 단일 

은닉층을 통해 데이터의 차원을 𝑑𝐹𝐶1 = 8로 축소한다. FC 

layer 2 는 그 데이터의 차원을 𝑑𝐹𝐶2 = 2로 다시 한번 더 

축소하여 최종적으로 PA 의 비선형성이 보정된 2 개의 

출력 신호, 즉 동상 성분(𝐼)과 직교 성분 (𝑄)을 추출한다. 

이를 통해 PA 입력 신호 𝑋𝐷𝑃𝐷_𝑜𝑢𝑡이 결정된다. 

3. 실험 결과 및 성능 분석 

본 장에서는 DeltaGRU-, Transformer-based DPD 

모델의 성능을 비교한 결과를 분석한다. 각 모델은 

Python 및 PyTorch 기반으로 구현했다. 실험 방법은 

다음과 같다. 먼저 실제 PA 데이터를 이용해 비선형 

특성을 갖는 PA 모델을 학습한다. 동일 구조 모델을 

이용한 DPD 모델과 결합하여 하나의 cascaded 모델을 

구성한다. DPD 모델은 cascaded 모델이 최대한 선형적 

특성을 보이도록 PA 모델의 입력을 사전왜곡하도록 

훈련되었다. 이때 PA 모델의 파라미터는 고정(frozen)한 

채로 훈련을 진행한다. 

그림 2 는 AM-AM 및 AM-PM 그래프이다. 그림 2 

(a)를 통해 알 수 있듯, DPD model 을 사용하지 않은 

경우 심각한 비선형 왜곡을 보였다. DeltaGRU-based 

DPD 를 사용하여 이를 상당 부분 개선한 것을 그림 2 

(b)에서 볼 수 있다. 그림 2 (c)는 Transformer-based 

DPD 가 가장 우수한 선형성과 최소환의 위상 왜곡을 

달성했음을 보여준다. 

표 1 의 EVM 및 ACLR 평가 결과에서도 

Transformer-based DPD 가 가장 낮은 값을 기록하여, 

비선형 보상 및 스펙트럼 누설 억제 성능이 가장 

우수함을 확인하였다. 기존 SOTA 모델인 DeltGRU 대비 

EVM은 3.34배, ACLR은 2.48배 향상된 성능을 보였다. 

Ⅲ. 결론  

본 논문에서는 6G 및 5G Advanced 환경에서 

요구되는 고효율 PA 의 비선형성과 메모리 효과를 

극복하기 위해, Transformer-based DPD 아키텍처를 

제안하였다. 제안된 모델은 특징 증강 과정을 통해 PA 

특성을 효과적으로 모델링하였으며, Transformer 의 셀프 

어텐션 메커니즘을 활용하여 기존 RNN 기반 SOTA 

모델 대비 월등한 선형화 성능을 입증하였다. 실험 결과, 

EVM 과 ACLR 지표에서 각각 x3.34 과 x2.48 의 성능 

향상을 달성하며 DPD 기술의 새로운 가능성을 

제시하였다. 제안된 아키텍처는 향후 LLM(Large 

Language Model) 기반 모델로 확장함으로써, 보다 

복잡한 환경에서도 PA 선형성을 안정적으로 보장할 수 

있는 방향으로 발전시키는 것을 목표로 한다. 
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