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요 약

거대 언어 모델 (LLM)의 엣지 디바이스 탑재를 위해서는 양자화 (Quantization)가 필수적이나, 이상치로 인한 성능 저하가 주요한 문제로 지적된다.
기존 연구인 SpinQuant는 가중치와 활성화 값의 회전을 통해 이를 완화하였으나, 추론 속도를 위해 일부 회전 행렬을 Hadamard 행렬로 제한하여
정확도 (perplexity) 향상에 한계를 보인다. 본 논문에서는 이러한 한계를 극복하기 위해 모든 회전 행렬을 학습 가능한 형태로 변환하면서 이에 따른
latency를 최소화하는 기법인 Fully Learned Rotation (FLRot)을 제안한다. 실험 결과, 제안하는기법은 기존 기법 대비 0.43 정도의 PPL 개선 및최대
4.3%의 zero-shot 추론 성능 향상을 보였으며, 커널 추론 지연 시간(latency)은 0.6x-1.27x 수준에서 유지됨을 확인하였다.

Ⅰ. 서 론

트랜스포머 기반 거대 언어 모델 (LLM)은 뛰어난 성능을 보이지만, 방

대한 파라미터 수와 연산량으로 인해 모바일 및 엣지 디바이스에서의 구

동에 제약이 따른다. 이를 해결하기 위해 4-bit 이하의 양자화

(Quantization) 기법이활발히 연구되고있으나, 활성화 값에 존재하는 이

상치는 양자화 오차를 증폭시켜 모델 성능을 급격히 저하시킨다 [1].

기존 연구인 SpinQuant [2]는 회전 (Rotation) 행렬을 통해 이상치를 분

산시키는 방식으로 이 문제를 효과적으로 완화하였다. SpinQuant는 일부

회전 행렬(R1, R2)은 학습을 통해 최적화하지만, 온라인으로 수행되는 R3

와 R4는 고정된 아다마르 행렬 (Hadamard matrix)로 Fast Hadamard

Transform (FHT) 연산을 수행한다. 그러나 이는 데이터 분포에 따른 정

밀한 최적화를 저해하여 perplexity (PPL) 성능 향상의 한계를 야기한다.

따라서 본논문에서는모든 회전행렬을학습 가능한 파라미터로 변환하

여 최적화하는 양자화 기법인 Fully Learned Rotation (FLRot)을 제안한

다. 제안하는 방법의 효용성을 검증하기 위해 LLaMA-2 7B 모델을 대상

으로 기존 양자화 방식과의 PPL을 측정하여 비교한다. 또한 RTX 3090

GPU 환경에서 FHT 커널과 커스텀 커널을 사용한 회전 행렬 연산 간의

지연 시간을 비교하여 모든 회전 행렬을 학습 가능한 파라미터로 확장함

에 따른 실질적인 오버헤드가 미미한 수준임을 실험적으로 입증한다.

Ⅱ. 본론

2.1 회전 기반 양자화

회전 기반 양자화는 활성화 값에 회전 행렬을 곱하여 특정 차원에 집중

된 이상치를 여러 차원으로 분산시키는 평탄화 기법이다. 그 중, 대표적

연구인 SpinQuant [2]는 회전 행렬을 그 특성에 따라 크게 병합 가능 회

전과 온라인 회전으로 구분한다. 먼저 R1과 R2는 attention 블록 내부의

가중치에흡수될수있는병합가능회전행렬이다. 이들은직교성을유지

하는 Stiefel Manifold 상에서 Cayley SGD optimization [3]을 통해 학습

되며, 추론 시에는 가중치 행렬에 미리 곱해지므로 추가적인 연산 오버헤

드가 발생하지 않는다. R3와 R4는 4-bit 이하의 극단적인 양자화를 위해

도입된 온라인 회전 행렬로, 각각 KV Cache와 Feed-Forward Network

(FFN) 블록 입력의 이상치를 제어하는 역할을 한다. 이들은 인접한 비선

형함수의 존재로인해 가중치에흡수될 수없어런타임에직접계산되며,

SpinQuant는 연산 복잡도를 줄이기 위해 이를 학습 불가능한 아다마르

행렬로 고정하고 FHT 커널을 사용한다. 이는  의 연산 복잡도를
갖는 GEMM에 비해 FHT가  log의 연산만을 필요로 하기 때문
이며, 특히 긴 시퀀스의 prefill이나 multi-batch 환경과 같은 연산 집약적

시나리오에서의 이론적인 처리량에 있어 우위를 보인다. 그러나 이는 온

라인 회전 행렬을 고정된 아다마르 행렬로 제한함으로써 표현 자유도를

제한하는 결과를 초래한다.

2.2 완전 학습 회전

그림 1 FLRot 구조도

기존의 SpinQuant [2]는 FHT 연산을 위해 R3와 R4를 고정된 아다마르

행렬 또는 그 변형으로 제한하여, '학습을 통한 회전 최적화'라는 목적에

도불구하고 실제 학습 가능한 매개변수 공간은 병합 가능 행렬인 R1, R2

에국한되는한계를갖는다. 이러한제약은모델이실제활성화값의이상

치분포에유연하게대응하는것을방해하며, 결과적으로 4비트이하의저

비트 양자화에서 좋은 성능을 보이지 못한다. 본 논문에서는 이러한 제약

을 극복하기 위해 R3와 R4를 고정된 아다마르 행렬이 아닌, Stiefel



Manifold 상에서 정의된학습 가능한직교행렬로대체하는 완전 학습 회

전 (Fully Learned Rotation, FLRot) 방식을 제안한다. 이를 통해전체회

전 경로에 걸친 표현 자유도를 극대화함으로써, 4-bit 이하의 초저정밀도

양자화 과정에서 발생하는 이상치를 효과적으로 억제하였다.

이때 온라인 회전 행렬을 단순한 dense matrix 형태로 구현하는 경우

GEMM 연산은  의 연산 복잡도로 인해 연산 차원이 증가함에 따
라 급격한 latency의 증가를 유발한다. Attention layer에 위치한 R3는 개

별헤드(×) 단위로연산이수행되기때문에이에따른 latency
오버헤드가 미미한 반면, FFN에 위치하여 down-projection이 이루어지

기 전에 수행되는 R4의 경우 intermediate dimension이 
(LLaMA-2 7B 기준)에 이르기 때문에 일반적인 GEMM 연산으로 구현

할경우 latency가 폭발적으로 증가하게 된다. 따라서본 연구에서는 이들

을 × 크기의 블록들로 구성된 블록 대각 직교 행렬로 정의하여
학습함으로써 추론 과정에서의 연산 효율성을 확보할 수 있도록 하였다.

이러한 구조적 제약은 최적화 시 표현 자유도를 일부 제한하지만, Triton

기반의 커스텀 커널 구현을 통해 zero-copy 방식으로 Tensor Core에서

연산이 가능하므로 기존 FHT 커널과 비교하여 추론 속도에 있어 실질적

으로 미미한 오버헤드를 갖는다.

2.3 실험 환경 및 실험 결과

실험 환경: 제안하는 FLRot 기법의 성능을 검증하기 위해 LLaMA-2-7B

모델을 대상으로 실험을 수행하였다. 기존 기법과의 공정한 비교를 위해,

SpinQuant [2] 공식 구현에서 사용된 것과 동일하게 WikiText-2 데이터

셋에서 추출한 128개의샘플을 회전행렬 최적화에 사용하였다. 하드웨어

환경은 NVIDIA GeForce RTX 3090을 이용하였으며, 소프트웨어환경은

PyTorch(Python 3.11) 기반으로구축하였다. 블록 대각행렬곱셈을수행

하는 커스텀 커널은 Triton 3.1.0을 사용하여 구현 및 최적화하였다. 모델

의 추론 성능을 평가하기 위해 PIQA, HellaSwag, ARC-Easy,

ARC-Challenge, WinoGrande, LAMBADA (OpenAI) 총 6가지의

zero-shot 벤치마크 과제에 대한 성능을 측정하였으며, 최종적으로 기존

SpinQuant [2] 대비 PPL 변화량과 블록 대각구조를 적용한커널의 실행

속도를 정량적으로 비교 분석하였다.

그림 2. 양자화 조건에 따른 PPL 비교

그림 3. Zero-shot 벤치마크 성능 비교

실험 결과: 실험 결과는 그림 2, 3, 4와 같다. PPL 분석 결과 FLRot은

W4A4KV4 설정에서 0.43의 PPL 감소를 기록하였으며, zero-shot 벤치마

크과제에서의 추론 성능은W4A4KV4 및W4A4KV16 설정에서평균 정

확도가 각각 3.26%p, 4.3%p 가량 향상되었다. 다만 활성화 값이 16-bit인

설정에서는 두 방식 간의 성능 차이가 미미한 수준으로 수렴하였다. 또한

실행 속도 비교를 위해 LLaMA-2-7B 모델의 FFN intermediate size

(d=11,008) 조건에서 R4 연산의 실행 시간을 측정한 결과, PyTorch 기반

의단순블록 대각 행렬곱 구현(Torch BD)은 FHT 대비높은지연 시간

을보였으나 Triton 기반의 커스텀 커널(custom kernel BD)은 FHT와 대

등하거나 우수한수준의추론 속도를 기록하였다. 측정 결과   구
간에서는 커널 실행에 따른 오버헤드로 인해 FHT가 우세하였으나, ≥  구간에서는 Triton 기반 블록 대각 연산이 FHT 대비 약

1.1x-1.27x의 속도 향상을 기록하였다.

그림 4. 시퀀스 길이에 따른 커널별 실행 지연 시간(d=11,008)

Ⅲ. 결론

본 논문에서는 거대언어모델의 양자화 성능을 높이기 위해 기존

SpinQuant [2]의 구조적 제약을 극복한 FLRot 기법을 제안하였다. 온라

인 회전에 사용되는 R3, R4 행렬을 고정된 아다마르 행렬로 제한하는 대

신 학습 가능한 직교 행렬로 확장함으로써 활성화 값의 이상치를 효과적

으로 제어하였다. LLaMA-2 7B 모델을 대상으로 실험한 결과

W4A4KV4 양자화 환경에서 PPL은 기존 대비 0.43가량 감소하였고,

zero-shot 추론 성능에서 최대 4.3%의 성능 향상을 보이는 등 유의미한

개선을 보였다. 또한, 본 연구에서는 Triton 기반의 블록 대각 커널 최적

화를 수행하여 실제 추론 시의 실행 속도는 시퀀스 길이에 따라 FHT 대

비 0.6x-1.27x 수준을 유지하였고, 이를 통해 추론 과정에서 FLRot에 의

한 추가적인 오버헤드는 제한적임을 확인하였다.
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