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요 약 

 
대규모 IoT 환경에서는 네트워크 상에서의 경로 최적화 문제가 빈번히 발생하며 대체로 계산 

복잡도가 높은(NP-Hard) 조합 최적화 문제로 이어진다. 본 논문에서는 이러한 문제를 위해 신뢰도 전파 

기법에 기반한 새로운 프레임워크를 제안한다. 해당 방법은 Affinity Propagation 을 차용하여, 경로 선택 

과정에서 요구되는 다양한 제한 조건을 이분 매칭(Bipartite Matching)과 연판정 비터비 알고리즘(SOVA)를 

통해 실시간으로 만족하도록 설계되었다. 지도 API 기반 시뮬레이션을 통해 제안 기법의 처리 성능과 

최적해 도출을 검증하였으며, Nearest Neighbor 및 무작위 방식 대비 우수한 성능을 보임을 확인하였다. 

 

Ⅰ. 서론  

스마트 시티와 같은 차세대 통신 환경에서는 대규모 

사물인터넷(IoT) 단말과 도시 인프라가 네트워크를 통해 

긴밀히 연결되며, 자원 할당 및 신호 경로 제어 문제가 

핵심적인 통신 기술 이슈로 부각되고 있다 [1]. 특히, 

다수의 사용자(UE)가 제한된 네트워크 자원 하에서 

기지국(BS)과 연결된 그림 1 과 같은 상황에서는 단말간 

통신 신호의 최단 이동 거리를 찾는 경로 최적화가 

필요하고 이는 SNR 보존 측면에서 전체 네트워크 성능을 

좌우한다. 그러나 경로 최적화는 계산 복잡도가 매우 

높아 대규모 네트워크에서 제어하기에 본질적인 어려움이 

있다. 이를 해결하기 위해 기존 연구들은 주로 휴리스틱 

기반 접근법에 의존해왔으나 [2], 문제 규모가 증가 

할수록 성능 보장이 어렵고 실시간으로 변화하는 제약 

조건에 유연하게 적응하는 데 한계를 가진다. 
 

 
그림 1. 대규모 IoT 환경에서의 문제 상황 

 

본 논문은 조건 변화에 대한 실시간 적응과 최적해 

보장을 동시에 확보하기 위한 새로운 프레임워크를 

제안한다. 이 기법은 신뢰도 전파(Belief Propagation) 

기반의 이분 매칭(Bipartite Matching, BM)과 연판정 

비터비 알고리즘(Soft Output Viterbi Algorithm, SOVA)을 

결합한 것으로 이분 매칭과 비터비 알고리즘이 한 

주기에서 개별적으로 이루어져 각자의 아웃풋을 서로에게 

전달하도록 한다. 이를 통해 SOVA 가 예측한 최적해의 

신뢰도와 BM 이 통제하는 제한 조건에 대한 신뢰도를 

공유함으로써 조건이 실시간으로 변화하는 IoT 환경에 더 

강건한 대처를 할 수 있게 한다.  

Ⅱ. 본론  

제안하는 구조는 대표적인 경로 최적화 문제인 외판원 

순회 문제(Traveling Salesperson Problem)의 해를 구할 

수 있는데, 구조의 제약 조건만 변화시키면 이로부터 

변형된 문제 또한 해결할 수 있다. TSP 의 목표 함수는 

다음과 같다. 
 

min
{𝑏𝑖𝑡},{𝑎𝑡}

∑ 𝐷(𝑎𝑡−1, 𝑎𝑡)𝑁
𝑡=1     (1) 

𝑠. 𝑡. ∑ 𝑏𝑖𝑡𝑖 = 1, ∑ 𝑏𝑖𝑡 = 1𝑡 , 𝑏𝑖𝑡 = 1[𝑎𝑡 = 𝑖]  
 

이때 𝑏𝑖𝑡 ∈ {0,1}는 𝑖번째 도시를 시간 𝑡에 방문하는지 

나타내는 마스크이고 𝑎𝑡 ∈ {1, … , 𝑁} 는 시간 𝑡 에 방문한 

도시 인덱스이다. 이 목표 함수는 다음과 같이 네가지 

조건 함수를 이용해 다시 나타낼 수 있다. 
 

𝑚𝑎𝑥
{𝑏𝑖𝑡},{𝑥𝑡}

∑ 𝐺𝑡(𝑥𝑡−1, 𝑥𝑡)𝑁
𝑡=1 + ∑ ∑ 𝐾𝑖𝑡(𝑏𝑖𝑡, 𝑥𝑡)𝑁

𝑡=1
𝑁
𝑖=1 +

∑ 𝐸𝑡(𝑏𝑡)𝑁
𝑡=1 + ∑ 𝐼𝑖(𝑏𝑖)𝑁

𝑖=1     (2) 
 

𝐸𝑡와 𝐼𝑖 은 각각 하나의 시간에 하나의 도시만 가도록 

제한을 거는 조건이고, 𝐾𝑖𝑡 는 𝑏𝑖𝑡 와 𝑥𝑡 = (𝑚𝑡, 𝑎𝑡)가 특정 

시간 𝑡 에 동시에 도시 𝑖 를 가리킬 것을 제한하는 

조건이고, 𝐺𝑡는 도시 간에 유사도를 나타내는데 유사도는 

가장 먼 도시 사이 거리로부터 두 도시 거리를 뺀 값이다. 

제한 함수들은 모두 조건 달성 시 0 이 된다. 이때 𝑚𝑡 ∈

 {0,1}𝑁 는 현재까지 방문한 도시를 N  비트 마스크로 

나타낸 것으로 이를 이용해 그림 2 와 같은 가상의 N차원 

하이퍼큐브(hypercube)를 만들 수 있다. TSP 의 모든 

경로는 큐브 안에서의 forward process 한번으로 표현할 

수 있기 때문에 BCJR 알고리즘인 SOVA 에 적합하다 [3]. 

SOVA 는 일반 비터비 알고리즘과 달리 아웃풋으로 

특정 도시를 선택했을 때의 최대 신뢰도에서 다른 도시를 

선택했을 때의 최대 신뢰도를 뺀 값을 내뱉는다. 
 

δ𝑖𝑡̃ = 𝑚𝑎𝑥
𝑚𝑡

ζ𝑖𝑡(𝑚𝑡, 𝑖) − 𝑚𝑎𝑥
𝑚𝑡,𝑎𝑡≠𝑖

ζ𝑖𝑡(𝑚𝑡, 𝑎𝑡)    (3) 



 

 
그림 2. N=4 일 때 하이퍼큐브 구조 

 

이를 통해 신뢰도의 차이를 토대로 움직이는 BM 과 

SOVA 를 연결할 수 있다. BM 구조를 Affinity 

Propagation [4] 과 흡사한 형태로 구성하면 두 구조 

모두 최대-합(max-sum) 알고리즘이 되고 BM 은 

SOVA 로 다음과 같은 정보를 준다. 
 

λ𝑖𝑡(𝑥𝑡) = 𝑚𝑎𝑥
𝑏𝑖𝑡

[𝐾𝑖𝑡(𝑏𝑖𝑡 , 𝑥𝑡) + ρ𝑖𝑡(𝑏𝑖𝑡)] = {
ρ𝑖𝑡(1) 𝑖𝑓 𝑎𝑡 = 𝑖

𝜌𝑖𝑡(0) 𝑖𝑓 𝑎𝑡 ≠ 𝑖
   (4) 

 

이때 𝜌𝑖𝑡(1)는 𝑏𝑖𝑡 = 1 인 경우이고, 𝜌𝑖𝑡(0)은 𝑏𝑖𝑡 = 0인 

경우이다. 결과적으로 한 주기마다 BM 과 SOVA 는 

자신으로부터 비롯된 신뢰도를 주고받으며 엄격한 제한 

조건 하에 최적해 도출을 성공시킬 수 있다. 만약 환경 

적응형(online) 프레임워크로 기능하고 싶다면 제약 

조건을 이분 매칭의 𝐸𝑡 와 𝐼𝑖 에 넣어 이를 통해 단순한 

TSP 를 변형해 원하는 해로 수렴하도록 만들 수 있다. 

실험은 스마트 시티에서의 경로 최적화 문제 중 

하나로 많이 거론되는 쓰레기 수거 문제 [5]를 가져와 

진행했다. 서울 성북구 내에 위치한 의류 수거함 위치를 

모두 파악해 카카오맵 API 를 이용해 도로 환경에 기반한 

경로를 불러온 뒤 그 데이터를 토대로 최적의 클러스터링 

및 경로 찾기를 시도했다. 실제 쓰레기 수거 상황에 맞게 

여러 차량이 협업해 수거할 수 있도록 Affinity 

Propagation 을 이용해 헤더 노드를 중심으로 한 여러 

개의 클러스터를 생성했다. 그 후 각 클러스터마다 경로 

최적화를 진행한 뒤 헤더끼리도 최적화를 해 총 이동해야 

하는 거리를 측정했다. 비교군에는 탐욕 방식인 Nearest 

Neighbor(NN)과 무작위 방식을 이용했다. 
 

  
그림 3. BM-SOVA 로 찾아낸 최적 클러스터 및 경로 

 

결과는 그림 3 및 그림 4 와 같았는데 NN 및 무작위 

방식에 비해 제안 프레임워크가 가장 짧은 이동 거리를 

달성했다. 동일 조건에서 NN 와 비교 시 약 20% 이상, 

무작위 방식과 비교 시 약 60% 이상의 성능 향상을 

보였다. 특히 실험 과정 전체에 걸쳐 제안 기법이 

일관되게 최저 이동 거리를 기록함으로써 성능의 

우수성을 입증했다. 이를 통해 실제 데이터를 기반으로 

한 대규모 네트워크 상황에서도 제안 프레임워크가 

최적해 도출을 해낼 수 있음을 보였다. 

 
그림 4. 누적된 클러스터만큼의 총 이동 거리 

Ⅲ. 결론  

본 논문에서는 대규모 IoT 환경에서 발생하는 다양한 

경로 최적화 문제를 해결하기 위해, 신뢰도 전파 기반 

이분 매칭과 연판정 비터비 알고리즘을 결합한 새로운 

프레임워크를 제안하였다. 제안 기법은 이분 매칭이 

통제하는 제한 조건에 대한 신뢰도와 SOVA 가 산출하는 

경로 선택 신뢰도를 반복적으로 교환함으로써, 환경에 

따른 복잡한 제약 조건 하에서도 최적해 도출이 

가능하도록 설계되었다. 

실제 데이터를 기반으로 스마트 시티 환경을 가정한 

실험 결과, 제안한 프레임워크는 탐욕 기반 NN 및 

무작위 방식 대비 20%에서 60% 성능 향상을 달성하였다. 

이를 통해 실제 도로 환경과 다중 차량 협업 상황에서도 

제안 프레임워크의 유효성을 입증하였다. 향후 적응형 

(online) 기법의 성능을 확장된 실험으로 검증해보는 것을 

고려할 수 있다. 
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