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요 약

본논문은생체모방수중통신을위한흑범고래휘슬음생성모델의구현결과를제시한다. 휘슬음은다양한특징을보유한비선형주파수변조신호

로, 특정 확률분포를갖는다. 딥러닝기반휘슬음생성모델은휘슬음데이터의확률분포를따르도록매개변수를학습할수있으며, 이모델이효과적

으로학습되면생체모방수중통신목적의신호송신부에적용되거나, 데이터증강에도활용될수있다. 본 논문은흑범고래휘슬음의시간-주파수데이

터에 VAE 트랜스포머 인코더-디코더를 학습한 후, 잠재 공간을 혼합 가우시안 밀도로 모델링하는 방법을 제시한다. 제시한 방법은 혼합 가우시안

밀도로 모델링한 잠재 공간에서 랜덤 변수를 샘플링하고, 이를 디코더에 입력하면 조건부 휘슬 데이터 생성이 가능하다.

Ⅰ. 서 론

고래는 의사소통및 먹이탐색 등의목적으로 음향신호를 수중에서 발

생시킨다. 휘슬음은고래의대표적인발성중하나로, 다양한구조의시간

-주파수 변화를 통해 수중 환경에서 의사소통한다[1].

휘슬음은 많은 분야에서 관심있는 연구 주제이다. 고래와 돌고래의 발

성과 의사소통의 연관성을 연구하거나 종에 따른 음향 신호의 차이를 분

석하기위해휘슬음이활용되기도한다[1]. 휘슬음의시간-주파수변화를

모방하여송신정보를변조하는생체모방통신에서도휘슬음은주요모방

대상이다[2]. 생체모방 수중통신은 통신 신호를 생체 신호로 오인하게 하

여 은밀성을 보장하므로, 군사적 목적의 활용도가 높다.

본 논문에서는생체모방수중통신을위해딥러닝모델을통해휘슬음을

생성하는방안에대해고려한다. 휘슬음의시간-주파수데이터는특정확

률분포에서표본화된것으로이해할수있다. 이에 따라신경망의매개변

수를최적화하여휘슬음의확률분포를따르도록학습할수있다. 이러한

휘슬음 생성 모델은 생체모방 수중통신의 신호 송신부에 적용할 수 있으

며, 데이터 증강 목적으로도 활용 가능하다.

휘슬음의시간-주파수벡터 데이터는각시간프레임의주파수토큰으

로 변환하면 Variational Autoencoder (VAE) 트랜스포머가 다룰 수 있

다. VAE의 인코더는입력을압축된잠재변수공간에맵핑하며, 잠재 벡

터는 다시 VAE의 디코더를 통해 원래의 시간-주파수 벡터로 복원된다.

본 논문에서는 VAE 트랜스포머의잠재공간표현을학습하고, 이 잠재

공간을다시혼합가우시안밀도로모델링함으로써휘슬음의조건부생성

가능성을 제시한다. 혼합 가우시안 밀도는 다수의 가우시안 컴포넌트로

구성되며, 각각의 가우시안 컴포넌트가 휘슬음의 특정 형태를 대표한다.

특정 컴포넌트에서 잠재 벡터를 표본화하는 방법을 통해, 휘슬음을 조건

부로 생성할 수 있다.

Ⅱ. 흑범고래 휘슬음 데이터

본 논문에서는 미국 해양대기청[3]의 흑범고래 휘슬음 데이터를 활용하

였다. 흑범고래 휘슬음을 원신호 스펙트로그램으로부터 추출하기 위해,

[4]에서 제시한 방법을 적용하였다. 이 방법으로 총 232,177개의 개별 휘

슬음을 추출했다. 그림 1에 흑범고래 휘슬음 추출 예시를 나타내었다.

추출된휘슬데이터의주파수는트랜스포머에입력할수있도록토큰화

하였다. 휘슬 데이터는 2 kHz에서 12 kHz의 주파수범위를 256개의 주파

수이산토큰으로나누었다. 트랜스포머가휘슬구간의시작과 종료지점

을 파악할 수 있도록 Start-of-Sentence (SOS)와 End-of-Sentence

(EOS)를 시작과끝에배치했다. SOS과 EOS는 각각 0번과 257번의 토큰

을 할당하였다.

Ⅲ. 휘슬 데이터의 잠재 변수 모델링

휘슬 데이터는 VAE 트랜스포머를 통해 잠재 변수로 표현될 수 있다.

잠재변수로변환된데이터는다시혼합가우시안분포모델을통해명시

적인 확률 분포로 모델링 가능하다. 본 장에서는 VAE 트랜스포머 학습

방법과 혼합 가우시안 분포 모델에 대해 각각 다룬다.

(1) VAE 트랜스포머 학습

먼저신경망구조는일반적인인코더-디코더의트랜스포머블록구조로

구성했다. 인코더는휘슬데이터 입력을받아잠재변수로표현하는방법

을학습한다. 인코더는 SOS 토큰을포함한최대 512개 길이의휘슬데이

터를입력받아 4개의트랜스포머블록으로 512×64차원 임베딩벡터를출

력한다. 이 중에서첫번째임베딩벡터를 Fully Connected Layer (FCN),

그림 1. 흑범고래 휘슬음 스펙트로그램 및 추출 예시.



swish layer, FCN으로 처리하고, 재매개변수화를 통해잠재 변수를 샘플

링하도록 했다.

디코더는 자기 회귀 방식으로 휘슬 데이터를 생성하기 위해,

self-attention의 인과적 처리 방식을 적용하도록 구성했고, 잠재 변수를

각 트랜스포머 블록으로 입력받게 된다. 디코더는 인코더와 동일한 입력

을 받아 4개의 트랜스포머 블록을 통과시켜 257차원의 확률 질량을출력

한다. 디코더의 트랜스포머 블록에서 self-attention 계층은 causal mask

를 적용하였다. 길이가다른데이터를배치단위로학습하기위해, 0 값을

패딩하였으며, 이에 따라 0 패딩에 대한 mask를 입력하여 처리했다.

전체 손실함수는 Cross-entropy loss와 Kullback-Leibler (KL) 손실의

가중합으로 구성하였다. KL 손실의 가중치 는 10-4으로 설정했다.

그림 2는 VAE 트랜스포머의손실및 정확도학습곡선을나타낸것으

로, 정확도와손실이모두일정하게수렴하는것을볼수있다. 학습을위

해, Epoch는 50, minibatch 크기는 128, 학습률은 10-4로 설정했으며,

Adam optimizer를 적용했다.

전체 데이터의 95%는 학습, 5%는 테스트에 활용하였다. 테스트 결과

정확도는 80.27%, 손실은 0.5213으로, 훈련 결과와 비슷하게나타나 과적

합은 나타나지 않았다고 판단했다.

(2) 혼합 가우시안 분포 모델링

휘슬시간-주파수데이터는 VAE 트랜스포머를통해 64차원의잠재변

수로변환하였다. 총 232,177개의 잠재변수와 Expectation Maximization

(EM) 알고리즘을 통해 혼합 가우시안 분포의 매개변수를 추정하였으며,

가우시안 컴포넌트의 수는 12,000개로 설정하였다.

Ⅳ. 휘슬 데이터의 조건부 생성

휘슬 데이터의 잠재 공간을 12,000개의 가우시안 분포로 모델링하였으

므로, 잠재 공간에서의잠재변수표본화 방법에따라무조건부와조건부

생성이가능해진다. 무조건부생성은 12,000개의가우시안분포중하나를

mixing coefficient에 따라샘플링한 후, 해당 가우시안 분포에서잠재변

수를 순차적으로 샘플링한다. 반면 조건부 생성은 특정 가우시안 분포를

선택한 후, 무조건부와 동일한 과정을 수행할 수 있다.

그림 3은 k번째가우시안컴포넌트의잠재변수를통해 100개의휘슬을

생성하여누적한결과를나타낸 것으로, 특정 컴포넌트의잠재변수가일

정한형태의휘슬음을생성하도록유도하는것을볼수있다. 그림 3의유

도 결과에서 Temperature는 0.4로 설정했다.

조건부생성결과 (그림 3)에서 확인할수있는특징은하나의컴포넌트

에서단일의휘슬형태만표본화되지않을수있다는점이다. 그림 3의 (b)

와 (d)는 이러한 현상을 잘 나타내고 있다. 이 결과는 두 가지 가능성을

시사하는데, 하나는 가우시안 컴포넌트의 수가 부족해서 다른 휘슬 형태

의두클러스터를하나의가우시안분포로모델링했을가능성이다. 이 경

우 더많은수의가우시안 분포를 활용해야 하지만, 이미 많은수의가우

시안컴포넌트수인 12,000개를 적용하였으므로, 혼합가우시안분포가아

닌다른잠재변수모델링방안이더적합할수있다. 두번째는잠재변수

중 하나가 시작 주파수를축으로하는대칭을의미하는 경우이다. 그림 3

의 (b)는 시작주파수를 축으로시간-주파수패턴이 두그룹으로 나뉜다.

반면 (d)는 조금 더 복잡한데, 시작 주파수 부근에서 한 번 분기하며, 0.6

초 부근에서 다시 한번 나뉜다. 이것이 VAE 트랜스포머 기반의 잠재 변

수를혼합가우시안분포로모델링할때의특징일가능성도배제할수없

다.

Ⅴ. 결론

본논문은생체모방통신을위한 VAE 트랜스포머기반의고래류휘슬

의조건부생성결과를제시하였다. 그리고잠재변수공간을혼합가우시

안 밀도로 모델링하고 각 가우시안 컴포넌트를제어하여 특정 형태 생성

이가능한것을확인하였다. 추후에는해당트랜스포머기반의 휘슬생성

방법의특징에대해더 상세히파악할예정이며, 트랜스포머의 자기회귀

특성에 따라 연산량이 발생하는 문제를 개선하기 위한 방안도 연구할 계

획이다.
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그림 2. VAE 트랜스포머의 손실 및 정확도 학습 곡선

(a) (b) (c) (d)

그림 3. 휘슬 조건부 생성 결과: (a) k=1, (b) k=4,329, (c) k=6,839,

(d) k=10,004.


