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요 약

본 논문은 대규모 단백질 언어 모델(Protein Language Model, PLM)을 활용하여 새로운 Titin 단백질 서열을 생성하는 방법을 제안한다. 이를 위해
대표적인대규모 PLM인 ProtGPT2와 ProGen2를 적용하고, UniProt에서 제공하는 Titin 단백질 데이터를 이용하여 fine-tuning을 수행하였다. 학습
데이터는아미노산 서열길이, 인간및 비인간 유래여부, 그리고도메인(domain) 유형을기준으로 체계적으로분할하여 Titin 단백질의구조적·기능적
특성이 효과적으로 반영되도록 구성하였다. 실험 결과, fine-tuning을 통해 생성 성능이 유의미하게 향상되었다. ProtGPT2의 경우 유효 서열 비율이
기존 42%에서 74%로증가하여 27.59%의성능향상을보였으며, ProGen2는 38%에서 80%로증가하여 53.85%의향상률을달성하였다. 또한, 생성된
단백질의 구조적 안정성역시 기존 대비 약 10% 향상됨을 확인하였다. 이러한 결과는 Titin 특화 데이터 기반 fine-tuning이 대규모 PLM의 단백질
생성 성능과 구조적 신뢰성을 효과적으로 개선할 수 있음을 보여준다.

      

Ⅰ. 서 론

최근단백질서열데이터를대규모로학습한단백질언어모델(Protein 

Language Model, PLM)이인공지능기반생명정보학분야에서핵심적인

연구흐름으로자리잡고있다. PLM은아미노산서열을언어적시퀀스로

해석하여 단백질에 내재된 통계적 규칙성과 진화적 패턴을 학습할 수 있

으며, 이를 통해 단백질 서열 생성, 구조 예측, 기능 분석 등 다양한 응용

분야에서우수한성능을보이고있다 [1].

대규모 서열 데이터로 사전학습된 PLM은 일반적인 단백질 생성에 대

해높은범용성을가지지만, 특정단백질을목표로한생성(task-specific 

generation)의경우해당단백질의고유한서열분포나구조적·기능적특

성을충분히 반영하지못하는한계를가진다. 이러한문제를해결하기 위

해, 최근에는 특정 단백질 데이터셋을 활용한 fine-tuning기법이 주목받

고있으며, 이를통해사전학습된 PLM의일반화능력을유지하면서도목

표단백질의특성을효과적으로반영할수있음이보고되고있다.

Titin 단백질은현재까지알려진단백질중가장긴아미노산서열을가

지며, 구조적·기능적 특성이 상이한 수백 개의 도메인(domain)으로 구성

되어있다. 각 도메인은서로 다른탄성특성을가지며, 이러한조합을통

해 Titin은 근육의 수축 및 이완 과정에서 기계적 안정성과 탄성 조절에

핵심적인 역할을 수행한다. 그러나 현재까지 실험적으로 규명된 Titin 도

메인의구조정보는전체구조의약 7% 수준에불과하여 [2], Titin의구

조–기능관계를체계적으로이해하기에는여전히큰한계가존재한다.

이러한제한된구조정보문제를극복하기위해, 계산적방법기반의단백

질 서열 생성 및구조 예측 기술은 중요한대안으로 주목받고있다. 특히, 

PLM을 활용하여 Titin 특화 서열을 생성하고, 생성된 서열에 대해 구조

안정성 및 타당성을 평가하는 접근은 기존 실험 기반 연구를 보완할 수

있는새로운가능성을제공한다.

따라서 본 연구는 사전학습된 대규모 PLM을 Titin 단백질 데이터로

fine-tuning하여새로운 Titin 단백질서열을생성하고, 생성된서열에대

해 구조 예측 기반의 성능 평가를 수행함으로써 PLM의 유효성을 검증한

다. 이를 통해 본연구는 Titin 단백질의 구조적다양성 확장 가능성을제

시함과 동시에, 향후 근육의 역학적 특성 및 구조–기능 관계 연구를 위한

기초적토대를마련하고자한다.

Ⅱ. 본론

2.1 Protein Lannguage Models

본 연구에서는 대규모 단백질 언어 모델을 활용하여 특정 단백질인

Titin 단백질 서열 생성 성능을 비교·분석하기 위해, 대표적인

autoregressive 트랜스포머기반모델인ProtGPT2와ProGen2를사용한

다. 두 모델은 모두 대규모 단백질 서열 데이터를 통해 사전학습된 기반

모델로, 일반적인단백질생성능력을보유하고있으며, 본연구는동일한

Titin 데이터셋을이용해 fine-tuning을수행함으로써 Titin 특화생성성

능을평가한다.

ProtGPT2는 7억개이상의파라미터를가지는 autoregressive 트랜스포

머모델로, 약 5천만개의단백질서열을이용해사전학습되었다. 이모델은

자연단백질서열에내재된통계적특성과진화적패턴을학습하여, 자연단

백질과 유사한 특성을 가지면서도 기존 서열과는 구별되는 새로운 단백질

서열을생성할수있는능력을갖는다 [3]. 이러한특성으로인해ProtGPT2

는단백질서열생성연구에서널리활용되는기준모델로사용되고있다.

ProGen2는ProtGPT2와동일한트랜스포머기반 autoregressive 구조

를따르지만, Rotary Positional Embedding(RoPE)을적용함으로써토큰

간상대적위치정보를보다효과적으로모델링할수있다는 차별점을가

진다. 이는 긴 아미노산 서열을 가지는 단백질에서 장거리 의존성

(long-range dependency)을학습하는데유리한구조적특성이다. 본연

구에서는 ProGen2 모델중약 10억개의단백질서열로사전학습된 7억

개이상의파라미터를가지는medium 모델을사용하였다 [4]. Titin 단백

질데이터의규모와 fine-tuning 안정성을고려할때, 27억개 이상의파

라미터를 갖는 large 모델보다 medium 모델이 과적합 위험이 낮고 안정

적인학습및서열생성에보다적합하다고판단하였다.



이와 같이 본 연구는 구조적 특성이 상이한 두 PLM을 동일한 조건에서

fine-tuning하여비교함으로써, Titin 단백질과같이매우긴서열과복잡한

도메인구조를가지는단백질생성에적합한PLM의특성을분석하고자한다.

2.2 실험 설계

2.2.1 데이터셋

본연구에서사용한데이터셋은 UniProt에서제공하는인간 Titin 단백

질 서열을 기반으로 구성하였다. 데이터의 중복성을 최소화하고 서열 간

유사도를통제하기위해, 서열동일성(sequence identity) 90% 기준을적

용하여 Titin 서열을 선별하였으며, 해당 조건을 만족하는 모든 Titin 서

열을종구분없이사용하였다. 이는 ProtGPT2와 ProGen2 모델이사전

학습 과정에서 UniRef90 데이터셋을 사용한 설정과 동일한 기준을 유지

하기위함이다 [3], [4].

Titin 단백질은 수만 개의 아미노산으로 구성된 초대형 단백질로, 전체

서열을 그대로 학습에 사용하는 경우 모델 학습의 효율성과 안정성이 저

하될수 있다. 이에 따라본 연구에서는 Titin 서열을구조적·기능적 특성

에따라구분되는도메인(domain) 단위로분할하여데이터셋을구성하였

다. 각도메인서열은중복제거과정을거친후독립적인학습샘플로사

용되었으며, 이를 통해 Titin 단백질의 다양한 국소적 구조 특성이 모델

학습에효과적으로반영되도록하였다.

Fine-tuning에사용된최종데이터셋은중복이제거된약 2,100개의도

메인 단위 서열로 구성되었다. 데이터 입력 형식은 각 모델의 서열 처리

방식에맞추어구성하였다. ProtGPT2의경우, 각도메인서열앞에종료

토큰(end-of-text token)을포함하고, 도메인서열의길이가일정기준(최

대 60자)을초과할경우줄바꿈을적용하여입력하였다. 반면, ProGen2에

서는 Titin 단백질임을명시하는특수토큰을도메인서열앞에추가하고, 

줄바꿈없이하나의연속된시퀀스로입력하였다.

이와같은입력형식차이는각모델의사전학습구조및토큰화방식에

따른것으로, 본연구에서는모델별특성을고려한입력설계를통해공정

하고안정적인 fine-tuning 환경을구성하였다.

2.2.2 데이터 분할

본 연구는 fine-tuning된 모델의 일반화 성능을 안정적으로 검증하기

위해전체데이터셋을 Train:Test = 8:2 비율로분할하였다. 단순한무작

위 분할로는 Titin 단백질의 구조적·통계적 특성이 학습 데이터에 편향될

수 있으므로, 본 연구에서는 Titin 단백질의 특성을 반영한 Stratified 분

할전략을적용하였다.

구체적으로, 데이터 분할은 도메인(domain) 종류, 아미노산 서열 길이, 

그리고 인간/비인간 유래 여부를 기준으로 수행하였다. 이러한 분할 기준

을 적용한 이유는 다음과같다. 첫째, Titin 단백질의 도메인별 서열은 길

이 분포가 불균등하므로, 단순 분할 시 특정 길이 구간의 서열이 학습 또

는 평가 데이터에 과도하게 집중될 수 있다. 이에 따라 서열 길이 기준의

stratification을통해각길이구간이학습및평가데이터에고르게분포

되도록 구성하였다. 둘째, 동일한 도메인은 유사한 구조적·기능적 특성을

공유하므로, 특정도메인에 대한학습 편향을 방지하기 위해 도메인 종류

를 분할 기준에 포함하였다. 이를 통해 fine-tuning 과정에서 Titin 단백

질의다양한구조적특성이균형있게학습되도록하였다. 마지막으로, 인

간및비인간유래 Titin 서열을분리하여분할함으로써, 모델이특정종

에 과적합되는 것을 방지하고 종 간 일반화된 Titin 단백질 서열 생성 능
력을확보하고자하였다.

이와같은 stratified 분할전략의효과를검증하기위해, 본연구에서는

동일한 Train:Test 비율을유지한상태에서무작위(random) 분할방식과

성능을 비교·분석하였다. 이를 통해 제안한 데이터 분할 전략이 Titin 단

백질생성성능및일반화능력에미치는영향을정량적으로평가하였다.

2.3 실험 방법

본연구에서는 ProtGPT2와 ProGen2의구조적특성을고려하여, 각모

델에 대해 차별화된 학습 하이퍼파라미터를 설정하였다. 학습률, 배치 크

기, 학습 에폭 수 등 주요 하이퍼파라미터는 사전 실험을 통해 각 모델에

서최적의성능을보이는값을사용하였다.

Fine-tuning은 두모델 모두 기존에 공개된공식 라이브러리를기반으

로수행하였다. ProtGPT2의경우 HuggingFace 표준라이브러리를사용

했으며, ProGen2는해당모델을제안한선행연구에서공개한전용라이

브러리를활용했다 [5]. 이를통해각모델의사전학습설정및토큰화방

식이유지된상태에서 Titin 데이터에대한 fine-tuning을진행했다.

학습방식으로는모델의일부파라미터만을업데이트하는방식이아닌, 

모든파라미터를갱신하는 full fine-tuning을적용했다. 이를통해사전학

습된 PLM이보유한일반적인단백질생성능력을유지하면서 Titin 단백

질의구조적특성과서열분포를보다효과적으로반영하도록하였다.

또한, 모델의 과적합 여부와 일반화 성능을 정량적으로 평가하기 위해

전체데이터셋을대상으로 5-fold cross validation을수행하였다. 각 fold

에서 학습된 모델의 성능을 비교·분석함으로써, 특정 데이터 분할에 의존

하지않는안정적인성능평가를수행했다.

2.4 실험 결과 및 성능 평가

본절에서는 fine-tuning된 PLM이 Titin 단백질의특성을반영한서열

을생성할수있는지를평가하기위해, ① 서열유효성(valid sequence)과

② 구조적안정성(structural plausibility) 두관점에서성능을분석한다.

2.4.1 서열 유효성 평가

먼저, 언어모델기반생성품질을평가하기위해 Perplexity가낮은상

위 50개의 생성 서열을 선별하여 분석하였다. Perplexity는 생성 서열이

학습된 분포에 얼마나 잘 부합하는지를 나타내는 지표로, 값이 낮을수록

언어모델관점에서생성품질이우수함을의미한다.

선별된 생성 서열에 대해, 자연 단백질 데이터베이스에 존재하는 Titin 

서열과의 서열 일치율(sequence identity)을 계산하였다. 본 연구에서는

서열일치율이 40–70% 범위에속하는경우를, “자연단백질의통계적특

성을충분히반영하면서도기존서열을단순히복제하지않는” 유효한새

로운 Titin 단백질서열(valid sequence)로정의하였다. 이는기존단백질

생성연구에서사용되는 novel-yet-natural기준을따른것이다.

표 1은 Stratified 데이터분할여부에따른유효서열비율을비교한결

과를보여준다. ProtGPT2의경우, 무작위분할(random split)에서는유효

서열비율이 58%에그친반면, stratified 분할을적용했을때 74%로증가

하여 27.59%의상대적향상을보였다. ProGen2에서는이러한효과가더

Model Data Split Valid Sequences / Top-50 Valid Ratio (%)

ProGPT2 Random 29/50 58

ProGPT2 Stratified 37/50 74

ProGen2 Random 26/50 52

ProGen2 Stratified 40/50 80

표 1 Stratified 분할여부에따른유효서열비율비교



욱뚜렷하게나타나, 유효서열비율이 52%에서 80%로증가하여 53.85%

의향상률을기록하였다. 이러한결과는 stratified 분할을통해특정도메

인이나서열길이에대한편향된학습이완화되고, Titin 단백질의다양한

특성이보다균형있게학습되었음을의미한다.

2.4.2 구조적 안정성 평가

서열 유효성 평가에 더하여, 생성된 단백질이 물리적으로 실현 가능한

구조를 형성할 수 있는지를 검증하기 위해 구조적 안정성 평가를 수행하

였다. 이를위해 AlphaFold2를사용하여생성된유효서열의 3차원구조

를예측하고, 해당구조를기존자연 Titin 단백질구조와비교하였다.

구조 비교 지표로는 TM-Score를 사용하였다. TM-Score는 0에서 1 

사이의 값을가지며, 값이 1에 가까울수록두 구조간의 유사도가높음을

의미한다. 일반적으로 0.5 이상의 TM-Score는동일한구조적 fold를가

질가능성이높음을시사한다.

표 2는 stratified 분할 여부에 따른 평균 TM-Score를 비교한 결과를

나타낸다. ProtGPT2의 경우, stratified 분할을 적용함으로써 평균

TM-Score가 0.525에서 0.588로약 10% 향상되었으며, ProGen2 역시

0.364에서 0.396으로증가하였다. 이는도메인단위로분할된 Titin 서열

을 stratified 방식으로학습할경우, 구조적으로더안정적이고자연단백

질과 유사한 구조를 생성할 가능성이 높아짐을 의미한다. 종합하면, 

stratified 데이터 분할은 서열 수준의 유효성뿐만 아니라 구조적 안정성

측면에서도일관된성능향상을제공함을확인할수있다.

Ⅲ. 결론

본 논문에서는 대규모 단백질 언어 모델을 활용하여 Titin 단백질 서열

을생성하고, 데이터셋분할전략이 fine-tuning 성능에미치는영향을분

석했다. 이를 위해 모델 구조와 학습 환경은 동일하게 유지한 채, 무작위

(random) 분할과 Stratified 분할을적용하여생성성능을비교·평가했다. 

실험 결과, Stratified 분할을 적용한 경우 모든 모델에서 유효 서열 비율

과구조적안정성지표가일관되게향상됨을확인하였다. 이는 Titin 단백

질의도메인종류, 서열길이, 그리고종정보를고려한데이터분할이편

향된학습을완화하고, 단백질의구조적·통계적특성을보다균형있게학

습하는 데 효과적임을 의미한다. 특히, 본 연구의 결과는 PLM이 단순한

서열생성에 그치지 않고, 구조적으로 타당한 단백질생성 가능성을함께

확보할 수 있음을 실험적으로입증한다. 이러한 결과는 목적단백질에 특

화된데이터구성과분할전략이 PLM 기반단백질생성의핵심요소임을

보여주며, Titin과 같이 긴 서열과 복잡한 도메인 구조를 가지는 단백질

연구에 있어 PLM 활용의 실질적인 가능성을 제시한다. 향후 연구에서는

서열 정보뿐만 아니라 3차원 구조, 물리적 특성, 생체역학적 정보를 함께

학습하는멀티모달(multimodal) 단백질언어모델로확장함으로써, Titin 

단백질의 구조–기능 관계를 보다 정밀하게 분석하고, 나아가 근육의 역

학적특성연구를위한새로운계산적프레임워크를제시하고자한다. 
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Model Data Split Average TM-Score

ProGPT2 Random 0.525

ProGPT2 Stratified 0.588

ProGen2 Random 0.364

ProGen2 Stratified 0.396

표 2 Stratified 분할여부에따른 TM-Score 비교


