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요 약

양자 신경망(QNN)은 파라미터화된 양자회로(PQC)를 통해 고전 데이터를 출력으로 매핑한다. 특히 데이터 리업로딩 구조를 가진 단일 큐비트 PQC는 

출력이 푸리에 전개로 해석되어 단변수 함수 근사가 가능하다. 그러나 기존 연구는 표현 가능한 주파수 범위에 초점을 맞추어, 회로 구성 요소가 푸리에 

계수를 어떻게 형성·조절하는지에 대한 구조적 이해는 부족했다. 본 논문은 단일 큐비트 상태 변화를 블로흐 구상의 출력 궤적으로 해석하여, 궤적의 

반지름·방향·위치가 각각 푸리에 계수의 크기·위상·오프셋에 대응됨을 보인다. 또한 리업로딩 층 수를 늘리는 대신, 학습 가능한 스케일러를 데이터 

인코딩에 도입해 회로가 목표 주파수 스펙트럼에 맞게 주파수 축을 자동으로 조정하도록 하는 설계 원리를 제안한다.

Ⅰ. 서 론

양자컴퓨팅은중첩과 얽힘같은양자역학적자원을 활용해특정문제에서

고전 계산을 뛰어넘을 잠재력을 가진다 [1,2]. 다만 이러한 이점은 양자이

기때문에자동으로얻어지는것이아니라, 주어진문제의구조에맞는알

고리즘과 회로를 설계할 때 비로소 실현된다. 따라서 양자 기계학습에서

도 성능을 높이기 위해서는, 단순히 더 깊은 회로를 쓰기보다

Parameterized Quantum Circuit (PQC)가 어떤 방식으로 함수를 표현하

고 학습하는지를 이해하는 것이 중요하다 [3].

최근 PQC 기반모델은고전 딥러닝이 수행하던분류와근사 문제에 적용

되며많은관심을받아왔다. 특히 데이터리업로딩구조는 PQC 출력을푸

리에 급수 형태로 해석할 수 있게 하여, 접근 가능한 주파수 성분 집합이

데이터인코딩 해밀토니안과리업로딩횟수에의해 결정된다는중요한이

론을 제공했다 [4]. 그러나 실제 학습에서는 목표 함수의 푸리에 계수를

사전에 알 수 없으므로, 표현 가능한 주파수 집합을 안다고 해서 곧바로

학습이잘되는것은아니다. 핵심은학습가능한파라미터들이어떻게출

력의 푸리에 계수들을 직접 만들어내는가이다 [5].

본 논문는 이 질문에 답하기 위해 PQC의 동작을 블로흐 구 위의 궤적 관

점에서 해석한다. 구체적으로, (i) 최소 구성 회로들을 통해 진폭·위상·오

프셋이 궤적으로 어떻게 나타나는지 단계적으로 보이고, (ii) 일반적인 단

일-큐비트 PQC에서 푸리에계수가 기하학적 요소로 완전히 결정됨을 정

리하며, (iii) 실용적 설계를 위해 데이터 인코더에 학습 가능한 스케일러

를 도입하여 목표 주파수 스펙트럼에 맞춘 주파수 조절형 인코딩을 제안

하고 실험으로 검증한다.

Ⅱ. 본론

본 논문은 단일큐비트 PQC의 출력을 측정축으로의투영값이라는 기하

학적 관점에서 재해석한다. 즉, 회로를 통과한 뒤 얻는 예측값은 어떤 복

잡한계산결과라기보다, 블로흐구위에서상태가그리는궤적를특정측

정축에서 바라본 값으로 이해할 수 있다. 이 관점을 취하면, PQC가 출력

으로 만들어내는 사인/코사인 성분이나 평균값, 진폭의 크기 변화가 모두

궤적의 모양과 위치 변화로 직관적으로 대응된다. 따라서 학습은 곧 블로

흐 구 위에서 상태가 움직이는 경로를 원하는 형태로 조형하는 과정이며,

측정은 그 경로를 한 축으로 투영해 신호로 읽어내는 과정으로 정리된다.

데이터 리업로딩(data re-uploading) 구조는 데이터 인코딩 게이트와 학

습 가능한 유니터리 블록이 번갈아 반복되는 형태를 갖는다. 기존 이론들

은이 반복구조가 어떤 주파수성분까지표현가능한가를 결정한다는 점

을강조해왔다. 즉, 데이터인코딩에 사용되는 연산자의스펙트럼구조와

리업로딩횟수가접근가능한주파수집합을제한하고, 층을늘리면그집

합이확장된다는것이다. 그러나 실제학습에서 더중요한질문은따로있

다. 주파수 성분이 가능하다는 사실만으로는 충분하지 않고, 학습 가능한

파라미터가 그 주파수 성분들의 계수를 목표 함수에 맞게 제대로 조절할

수 있어야 한다. 본 논문은 이 계수 형성 메커니즘을 궤적 관점에서 구체

적으로 보여주며, 표현 가능한 주파수의 존재와 계수 학습의 구체적 작동

원리를 분리해 설명한다.

이를 위해 우리는 매우 단순한 회로 구성에서 출발해, 진폭(amplitude)·위

상(phase)·오프셋(offset)이 각각 블로흐 구 궤적의 어떤 특징에 대응되는

지 단계적으로 추적한다. 먼저 데이터 인코딩만으로도 상태는 블로흐 구

위에서 원 형태의 경로를 그리며, 측정축으로 투영하면 기본적인 주기적

성분이 나타난다. 그 다음 학습가능한회전을추가하면, 궤적의시작점과

진행방향이바뀌면서출력의위상이이동한다. 더 나아가다른축방향의

회전이 도입되면 궤적이 적도면에서 기울어지거나 유효 반지름이 달라지

며, 그 결과 출력의 진폭이 조절된다. 마지막으로, 궤적이 특정 반구에 더

오래 머물도록 위치가 이동하면 투영값의 평균이 변하고, 이는 곧 오프셋

의 학습으로 해석된다. 요약하면, 위상은 궤적의 시작점/방향 변화로, 진

폭은 궤적의 크기 변화로, 오프셋은 궤적이 측정축 방향으로 얼마나 편향

되었는지로 이해할 수 있다.

이러한 직관을 일반적인 형태로 끌어올리기 위해, 본 논문은 단일 큐비트

에서 데이터 인코딩이 특정 축을 기준으로 회전을 유도하는 경우 상태가

본질적으로 원형 궤적을 따른다는 점에 주목한다. 학습 가능한 유니터리

는 이 원형 궤적을 다른 방향으로 회전시키거나 기울여 놓고, 측정은 그

결과를한축으로투영해읽는다. 이 과정의귀결로출력은상수항 + 사인

성분 + 코사인성분의결합형태로 정리되며, 각성분의 계수는오직기하

학적 요소들 초기 상태, 데이터 인코딩 축, 학습 회전이 만들어내는 상대



방향, 측정축의 관계로 결정된다. 중요한 점은, 이 결론이 단순히 푸리에

급수로 표현된다는 일반론이 아니라, 학습 파라미터가 출력 계수를 바꾸

는 방식이 결국 궤적의 반지름과 방향을 바꾸는 회전 기하학으로 환원된

다는 구체적 설명을 제공한다는 것이다. 따라서 회로 설계는 파라미터 수

를늘리는문제라기보다, 원하는계수구조를만들수 있는 궤적을 생성하

도록 회전 블록과 측정축 관계를 배치하는 문제로 재정의된다.

실용적 관점에서 본 논문은 또 하나의 핵심 제안을 한다. 목표 함수에 높

은 주파수성분이 포함될수록 기존 방식은 리업로딩 층을 늘려 접근 가능

한주파수범위를확장하려했다. 그러나이는회로깊이를빠르게증가시

켜 NISQ 환경에서 실행 비용과 노이즈 취약성을 키운다. 이에 대한 대안

으로, 저자들은 데이터 인코딩 단계에 학습 가능한 스케일러(scaler)를 도

입한다. 직관적으로 이는 입력을 회로에 그대로 주입하는 대신, 회로가학

습을 통해 입력의 유효 스케일을 조정하여 결과적으로 출력의 주기 구조

(주파수 축)를 맞추도록하는방법이다. 층마다다른스케일러를허용하면

제한된 리업로딩 깊이에서도 여러 주파수 성분을 효과적으로 포착할 수

있어, 깊이를 늘려서 주파수를 확보하던 전략을 인코딩을 학습시켜 주파

수를 정렬하는 전략으로 전환할 수 있다.

Ⅲ. 실험결과

시뮬레이션기반 실험을통해제안한 해석과 설계가실제 학습에서 유효

함을검증한다. 궤적 기반 해석이예측하는진폭·위상·오프셋의변화가학

습 결과와 일관되게 관찰되며, 특히 스케일러가 학습 과정에서 특정 값으

로 수렴하면서 목표 함수가 요구하는 주기 구조에 맞춰 출력이 정렬되는

현상이 확인된다. 여러 주파수 성분이 혼재된 목표에서도 리업로딩을 과

도하게 늘리지 않고 손실이 안정적으로 감소하고 근사 품질이 개선되는

결과는, 스케일러가단지이론적장치가아니라실제학습을돕는 “구조적

레버”로 작동함을 뒷받침한다. 결과적으로 본논문은단일큐비트 PQC의

학습을블로흐구위궤적의조형문제로해석함으로써, 표현력분석을넘

어 학습 메커니즘까지 연결하는 설계 지침을 제시한다.

위 그림은목표 함수와 학습된모델 출력(Model)을 비교한 결과로, 구간

전반에서 두 곡선이 거의 겹치듯 따라가고 있다. 특히 작은 진동과 큰 추

세가 함께 섞인 형태인데도, 모델이 국소적인 굴곡까지 잘 재현한다는 점

에서 PQC가 해당 타깃의 스펙트럼 구조를 충분히 학습했음을 보여준다.

이는 학습 가능한 스케일(scale) 파라미터의 학습 과정을 나타내며, 초기

에는큰 값에서 시작해 빠르게 감소한 뒤 약 1 근방으로 안정적으로 수렴

한다. 이는 학습초기에스케일이타깃주파수에맞는유효입력스케일을

탐색하다가, 최적 주파수 정렬이 이뤄지면큰 변화없이작은진동만남는

형태로 안정적으로수렴했음을 의미한다. 즉, 모델 출력이타깃을잘 맞추

는 동시에 스케일 파라미터도 안정화되므로, 제안한 스케일러 기반 인코

딩이 학습 과정에서 실제로 주파수 정렬 역할을 수행했다는 것을 뒷받침

합니다.

IV. 결론

본논문은데이터리업로딩 PQC를 부분푸리에급수로표현가능이라는

기존결과에서한걸음더나아가, 학습 가능한파라미터들이 푸리에 계수

를 어떻게형성·조절하는지를 블로흐구 위의출력 궤적 관점에서 설명했

다. 최소 회로 분석을 통해 진폭·위상·오프셋이 각각 궤적의 반지름·방향·

위치 변화로 대응됨을 보였고, 일반화된 정리를 통해 푸리에 계수가 기하

학적 요소들로 완전히 결정된다는 점을 정리했다. 또한 실용적 설계로서

데이터 인코더에 학습 가능한 스케일러를 도입해, 얕은 회로에서도 목표

주파수 스펙트럼을 맞추는 전략을 제안하고 실험으로 검증했다.
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그림 1. 타겟 함수

그림 2. 학습된 스케일러


