
양자 상태의 동역학 해석을 위한
머신 러닝 기반 연구 분석

임채문, 김중헌

고려대학교

anscodla0314@korea.ac.kr, joongheon@korea.ac.kr

A Study on Machine Learing-based Analysis
on Quantum Dynamics

　Chaemoon Im, Joongheon Kim

Korea Univ.

요 약

양자 상태의 시간에 따른 동역학을 예측하는 것은 양자 통신 분야에 있어 필수적이지만, 양자 상태는 외부의 측정에 의해
상태가 교란되므로 이를 고려한 예측 방법이 필요하다. 이러한 측정으로 인한 문제를 해결하기 위해, 기계학습 기반의 양자
동역학 예측 알고리즘 제시된 바 있다. 본고는 이러한 기계학습 기반의 양자 동역학 해석 알고리즘의 특징을 분석한다.

Ⅰ. 서 론

양자통신과정에있어, 양자 채널잡음으로 인해시간에 따라변하는양

자 상태를 추정하는 것은 매우 중요하다 [1]. 특히, 양자 순간이동

(Quantum Teleportation) 등의 양자 정보를 직접 전송하는 분야에 있어

시간에 따라 양자 채널에 의해 양자 정보가 어떻게 변하는지를 추적하는

일은 단순히 동역학을 이해하는 것을 넘어서 정보의 전송률을 결정하는

데 중요한 요소이다. 그러나, 양자 상태는 외부 측정에 의해 쉽게 교란되

어 얽힘 등 양자의 특성을 상실하게 되므로, 이러한 현상을 방지하면서도

양자 상태를 예측할 수 있는 기술의 필요성이 대두된다 [2].

이러한 양자상태의시간에따른변화를분석하기위해서, 기계학습기반

의 방법론이 제시된 바 있다. 특히, 미분방정식의 해를 구하기 위해 도입

되었던 여러 방법론이 양자 상태의 변화를 추적하기 위해 사용되었다. 이

러한 기계학습 기반 방법론은 기존에 양자 상태의 측정 데이터를 토대로,

특정 시간의 양자 상태가 어떤 방식으로 변화했는지 예측한다. 이러한 방

법은 양자 상태의 동역학 분석을 위한 측정을 최소화함으로써, 불필요한

양자 상태에 대한 간섭을 최소화할 수 있다. 외부 측정이 양자 상태의 붕

괴를 초래한다는 점을 고려하였을 때, 이러한 기계학습 기반 양자 동역학

추정 알고리즘은효율적인양자정보 전송 및검출을 위해 필수적인 알고

리즘이다.

그러나, 모델링에 사용되는 기계학습 모델은 유클리디안 공간에서 동작

하므로, 양자 상태공간의기하학적특성을잘 반영하지못하는것이 한계

점이다 [3]. 이에, 기하학적 특성을 반영할 수 있는 모델들이 양자 상태의

동역학을예측하는데사용되고있다. 특히 이러한양자상태의집합은수

학적으로 다양체(Manifold)로 기술되므로, 다양체 위에 정의된 동역학을

학습하기 위한 모델들이 적극적으로 해당 분야에 사용되고 있다.

본고는 이러한 양자 상태의 동역학을 파악하는 것이 양자 통신 기술에

있어서 어떠한 의미를 가지는지 서술하고, 양자 상태의 동역학을 묘사하

기 위한 기계학습 기반 기술들의 특징에 대해 분석한다.

그림 1. Neural ODE의 개념도.

Ⅱ. 본론

양자 상태(density matrix)는 유한 차원의 힐베르트 공간 위에 정의되어

있으며, 그 중   †    이라는 조건을 만족하는 특수한 집
합이다 [4]. 이러한 제약 조건을 만족하는 하에서 양자 상태의 동역학이

정의되어야 하므로, 양자 상태의 동역학은 다양체 위에서 기술되게 된다.

이 때, 양자 상태에 작용하여 한 양자 상태를 다른 양자 상태로 변환하는

모든 변환을 연산자(Operator)라고 한다. 특히, 양자 상태의 마르코프적

변화를 서술하는 연산자를 Lindbladian-Kossakowski 연산자라고 하며,

다음과 같이 정의된다 [5].

        † †
이 때, [,] 는 Lie bracket, {,}는 Jordan product를 의미하며, 전자의 식은

Hamiltonian, 후자의 식은 Dissipator라고 불린다. 전자의 경우양자 상태

의 Rank를 유지하는 변환인 반면, 후자의경우 양자 상태의 Rank를 증가

시키는 변환이다. 즉, 임의의 양자 상태는 Dissipator가 0이 아닌 경우 반

드시 Rank가 증가하며이는혼합상태(Mixed State)를 야기한다. 양자 통



그림 2. 확산 모델 기반 양자 동역학 분석

신에서 이러한 혼합 상태는 양자 채널로인한양자노이즈를설명하는현

상이며, H는 양자상태에특정정보를 인코딩하기위한외부의 조작을 의

미한다. 만일 이러한 동역학을 예측할 수 있는모델을 만들 수 있다면, 송

신한 양자정보가 어떻게양자채널에 의해 왜곡되는지를 예측할 수 있고

따라서 양자 정보의 송신률 분석 등 다양한 통신 분야에 기여할 수 있다.

이러한 동역학을 모델링하기 위해 최초로 도입된 알고리즘은 Neural

Ordinary Differential Equation (Neural ODE)이다 [6]. Neural ODE는

ResNet 등 기존의 인공신경망 구조가 미분방정식의 수치적 해법에 쓰이

는 Euler-Maruyama Simulation과 동일하다는 데서 착안한다. 즉, 이러한

신경망의 레이어 수가 충분히 많다면 연속 시간의 미분방정식의 수치적

해법과 동일한 형태를 가지며, 이를 기반으로 양자 상태의 역학을 해석하

는 데 사용하자는 것이다. 이러한 Neural ODE의 구조는 [그림 1]에 서술

되어 있다. QNODE(Quantum Neural ODE)는 해당 방식을 양자 상태의

거동을묘사하는데최초로사용한알고리즘이며, 양자 상태를 3차원벡터

로 표현한 블로후 구위에서의동역학을 성공적으로기술하였다 [7]. 그러

나 해당 방법은비교적 작은 규모의양자상태에 대해서수행되었다는단

점이 존재하며, 여전히 유클리디언 공간 위에서 동작하므로 물리적인 정

합성에 있어 한계점을 가지고 있다.

한편, 확산 모델(Diffusion Model)을 통해 해당 미분방정식을 해결하려

는 움직임 또한 존재한다. 확산 모델은 그 원리상 데이터를 통해 해당 데

이터를 생성하는 역과정(Backward Process)을 학습하는 모델이다. 따라

서, 실제 물리 궤적 데이터를 모아 학습을 수행하면 해당 물리 데이터를

설명하는 미분방정식의 수치적 해를 구할 수 있게 된다 [8]. 이러한 확산

모델 역시 기본적으로 유클리디안 공간 위에서 동작하므로, [그림 2]와같

이 수학적으로 다양체 위의 확률과정(Stochastic Process)을 정의하여 이

러한 문제를 해결한 모델들이 존재한다 [9, 10]. 해당 모델들은 양자 상태

의 거동뿐만 아니라 단백질 등다양한 다양체위에서 그움직임이서술되

는 물리적 현상 역시 성공적으로 기술한 바 있으며, 이는 모델이 다양체

위에서 기술된 동역학에 대해서 학습에 성공했다는 것을 시사한다.

해당 모델 이외에도 Physics-Informed Neural Network(PINN) [11]이

나 State-Space Model(SSM)[12] 등 다양한 모델이 양자 상태의 거동을

설명하기 위해 사용되고 있으며, 양자 상태의 기하학적인 구조를 반영하

는 방법으로 변형되어 사용되고 있다.

Ⅲ. 결론

본논문에서는 양자상태의 동역학 해석을위한다양한 기계학습 모델의

사용처 및 각자의 특징, 장단점에 대해 논하였다. 기계학습 모델은 양자

및 양자 상태의 동역학이 가지고 있는 기하학적/확률적 특성을 보다 잘

다루는 방향으로 진화하였으며, 이에 따라 더욱 정밀한 예측에 성공하고

있다. 이는 양자 통신 분야에서 양자 상태의 보다 정확한 예측과 해석에

기여할 수 있을 것으로 기대된다.
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