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요 약

해상운항 환경의복잡성과 AIS(automatic identification system)의 신뢰도 저하문제로 인해, 보조적인 선박 식별 기술이 요구되고 있다. 이를 위한
방법으로, 본 연구에서는 선박에서 사용되는 통신 신호의 변조 방식을 자동 식별하는 변조 인식 기법의 적용 가능성을 검토하였다. 6종의 해상 통신
신호를복소기저대역에서 모델링하고, Rician 채널 환경에서 CLDNN(convolutional long short-term deep neural network) 기반의변조 인식 실험을
수행하였다. 0 dB 이상의 SNR(signal-to-noise ratio) 구간에서 90% 이상의 분류 성능을 보였고, 이는 향후 다종 정보 기반 선박 식별 체계의 전처리
기술로 활용될 수 있는 가능성을 보여준다.

Ⅰ. 서 론

최근 해상 교통량증가와 함께 복잡해진 항로, 불법 조업, 밀수 등의 위

협으로 인해 해양 감시 체계의 부담이 가중되고 있으며 [1], 신속한 조난

대응과안전확보를위해신뢰성있는선박식별이중요해지고있다. 이를

위해 가장널리활용되는수단이 자동식별장치(automatic identification s

ystem, AIS)로, 선박의 MMSI(maritime mobile service identity)와 항해

정보를 지속 송신하여 충돌 방지 및 관제에 기여하고 있다 [2]. 그러나 선

박이 AIS를 끄거나 조작해 신원을 숨기거나, 전파 장애 및 스푸핑 등의

문제로 AIS를 이용한 선박 식별이 불가능한 사례가 빈번히 발생한다 [3].

이로 인해 AIS를 단독으로 사용한 식별 체계는구조적한계를 지니며, 이

를 보완하기 위한 다종 정보 기반의 식별 기술이 요구된다.

본 논문은 다종 정보 기반 선박 식별 체계에서 활용 가능한 정보원 중

하나로서, 해상 통신 신호의 변조 정보를 자동으로 분류하는 딥러닝 기반

변조 인식 기법의 성능을 분석한다. 이를 위해 다양한 해상 통신 신호를

기저 대역에서 모델링하고, 동일한 입력 조건에서 변조 방식의 분류 성능

을 평가하였다.

Ⅱ. 신호 모델링

본 논문에서는 해상에서 운용되는 통신 신호들을 복소 기저 대역에서

모델링하였다. NAVTEX(navigation telex), MF(middle frequency)-음

성, VHF(very high frequency)-음성, VDES(VHF data exchange syste

m), NAVDAT(navigation data), AIS 총 6가지 신호를 사용하였으며, 각

신호의변조방식과주요파라미터는국제표준문서및기술규격을바탕

으로 정의하였다.

이어서, 해상 무선 채널은 도심 환경과 달리, 송신국과 수신국 사이에

강한 LoS(line of sight) 성분이 존재하며, 동시에해수면에 의한반사파와

소수의 산란파가혼재한다 [4]. 이러한 해상 환경의 전파특성을반영하기

위해 Rician 페이딩 채널로 근사하였다.

수신 신호는 식 (1)과 같이 모델링된다 [5].

여기서 은 송신 신호,   은 다중경로 지연 에 해당하는 채널
계수, 은 복소 가우시안 잡음을 의미한다. 각 채널 계수는 식 (2)와
같은 Rician 페이딩 모델로 표현된다. 는 직접파와 반사파의 전력비로
식 (3)과 같이 계산된다.

식 (2)에서우변의첫번째 항은 LoS 성분을나타내며, 두 번째항은 다중

산란에의해형성되는 NLoS(non-line of sight) 성분을 의미한다. 는 Lo
S 경로의 위상 성분이며,  은 평균이 0이고 분산이 1인 복소 가우시
안 랜덤 성분이다. 는채널의 Rician 특성을 결정하는주요 파라미터이
다. 일반적인 해상통신 환경을가정하여 를 6 dB(선형 스케일 약 3.98)
로 설정하였다. 이는 직접파 전력이 반사파보다 약 4배 우세한 안정적 운

항 조건을 반영한다. 본 논문에서는 이러한 채널 모델을 기반으로 데이터

를 생성하였다.

    (1)

  (3)

     (2)



Ⅲ. 모의실험

본 장에서는 2장에서 모델링한 신호를 이용하여 해상 환경에서의 자동

변조 인식을 수행하였다. 변조 인식 모델의 입력으로 사용하기 위해 신호

를 리샘플링한 뒤평균전력을 1로 정규화를하였으며, 기저 대역 I-Q(in

phase-quadrature)성분을 분리하여 2×128 크기의 실수형 시퀀스를 2채
널 입력으로사용하였다. 생성된 데이터는 학습용, 검증용, 테스트용 데이

터로 각각 전체의 80%, 10%, 10% 비율로 분할하였다. 변조 방식 하나당

SNR(signal-to-noise ratio)별로 300개씩 총 6,000개의 데이터를 생성하

였고, 여섯가지변조신호에대해총 36,000개의데이터를변조인식신경

망 학습에 사용하였다.

변조 인식에 사용된 신경망으로는 CLDNN(convolutional long short-t

erm deep neural network)을 사용하였다 [6]. CLDNN은 합성곱신경망을

통한 국소 특징 추출과 순환 신경망을 통한 시간적 특성 학습을 동시에

수행할 수 있어, 통신 신호 변조 인식에 효과적인 구조로 알려져 있다. 본

연구에서 사용한 CLDNN의 전체 구조는 그림 1과 같다.

신경망학습에는 교차 엔트로피손실함수를 사용하였으며, 옵티마이저

로는 Adam [7]을 적용하였다 초기 학습률은 0.001, 배치 크기는 512로

설정하였다. 학습률은 5 에포크마다 0.8배로 감소시키는 스케줄링을 적용

하여최대 50 에포크까지학습을수행하였으며, 10 에포크 동안 검증정확

도 개선이 없을 경우 학습을 조기 종료하였다.

그림 1. 변조 인식에 사용되는 CLDNN 구조.

그림 2는 Rician 페이딩 채널 환경에서 각 변조 방식에 대한 SNR 별

변조인식정확도를나타낸것이며, 그림 3은 여섯가지변조방식의 평균

분류 정확도를 종합적으로 보여준다. 전체적으로 SNR이 증가함에 따라

모든 변조방식의 분류 성능이향상되었고, 특히 0 dB 이상부터는대부분

의 변조 방식에서 90% 이상의 정확도를 달성하였다. 이러한 결과는

CLDNN 모델이 해상 환경을 근사한 Rician 채널 조건에서도 각 변조 방

식의 특징을 효과적으로 분리하며 높은 분류 강건성을 유지함을 보여준

다.

그림 2. 변조 신호 별 변조 인식 결과.

그림 3. 모든 변조 신호에 대한 평균 분류 정확도.

Ⅳ. 결론

본 연구에서는 선박에서 사용하는 통신 신호의 변조 인식 가능성을 검

토하였다. 변조 인식을 위해 복소 기저 대역에서 6종의 통신 신호를 모델

링하고 해상 환경을 근사하기 위한 Rician 페이딩 채널을 적용하여 데이

터셋을 구성하였다. 생성한 데이터로 CLDNN 기반의 변조 인식 실험을

통해 SNR이 0 dB 이상부터 평균 90%의 정확도를확인하였다. 이는 향후

다종 정보 기반 선박 식별 기술에서 통신 신호의 변조 정보를 활용하여

신호의유형을사전에분류하고, 이후 단계에서신호유형별전처리및후

속 처리 절차를 선택하는 데 활용될 수 있음을 보여준다.
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