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요 약 
  본 연구는 재구성가능 지능형 표면 (reconfigurable intelligent surface: RIS) 지원 하향 링크 통합 센싱-통신 (integrated sensing and
communication: ISAC) 시스템에서 통신-센싱 성능의 상충 관계를 고려한 딥러닝 기반 RIS 빔포밍 최적화 기법을 연구한다. 최소 통신 성능

을 만족하면서 센싱 성능을 최대로 하도록 설계된 기존 딥러닝 시스템에서 발생하는 통신 제약 위반 또는 센싱 성능 저하 문제를 해결하기

위해 시스템설계 요구 조건에 따라가변하는 딥러닝 손실 함수를제안한다. 그 결과기존준정부호완화 (semidefinite relaxation) 기반 최적

화 방식보다 낮은 복잡도를 보이며 통신 서비스 품질 요구 조건을 만족하면서 센싱 성능이 향상됨을 볼 수 있다.

Ⅰ. 서론

  통합 센싱-통신 (integrated sensing and communication: ISAC)은 하
드웨어와 무선 자원을 공유하여 통신과 센싱을 동시에 지원함으로써 6G

이동통신의 핵심응용기술로고려되고있다 [1]. 한편 재구성가능 지능형

표면은 (reconfigurable intelligent surface: RIS) 저비용 저전력으로 무선

채널 환경을 재설정하여 음영 지역 없이 통신 서비스를 제공하거나 가시

선채널을확보하여센싱을가능하게한다 [2-3]. 이에 최근 RIS를 활용한

ISAC 시스템에서 센싱 성능과 통신성능이상충하는 환경에서 다양한 제

약 조건에서 성능을 최적화하는시스템 설계 및 성능 연구가수행되고있

다 [2-4].

   최근 하향링크 ISAC 시스템에 RIS를 도입할 때 통신 성능 서비스 품
질을만족하면서센싱성능을최적화하기위해송신빔포밍과 RIS 빔포밍

을 결합 최적화하는 연구를 수행하였다 [4]. 해당 비볼록 최적화 문제를

최적화알고리즘으로해결할경우송신빔포밍과 RIS 빔포밍의반복최적

화에의해계산복잡도와수렴까지시간지연문제가발생한다. 이러한문

제를 해결하기 위해 저복잡도 CNN(convolutional neural network)을 적

용한비지도학습을통해 RIS 빔포밍최적화기법이제안되었으나 [4], 특

정 통신 서비스품질만 만족할뿐 다양한서비스 품질을만족하지못하는

문제가 있다.

본 논문에서는 이러한 한계를 극복하기 위해 다양한 통신 서비스 품질

지원으로확대가능한비지도딥러닝학습방법을제안한다. 특히 통신신

호대잡음비 (signal-to-noise power ratio: SNR) 제약에 따라 적응적인

비지도 학습 손실 함수를 제안하여 학습한다. 그 결과 기존 손실 함수는

특정 제약 조건에서만 요구 성능을 만족하지만, 제안 손실 함수는 다양한

제약 조건에서 요구 성능을 만족하면서 기존 최적화 방식과 비슷한 성능

을 제공하는 것을 볼 수 있다.

Ⅱ. 시스템 모형 및 문제 정의

  고려하는 RIS 지원 ISAC 시스템은 그림 1과 같이  안테나 기지국

(BS),  반사 소자 RIS, 단일 안테나 통신 단말 (Comm. UE)과 타겟
(Target)로 구성된다. 기지국과 RIS 채널은  , RIS-단말 채널은  ,
RIS-타겟 채널은 로 둔다. 기지국은 송신 신호 를 빔포밍 벡터

∈×로 전송하며, 통신 단말 수신 신호 와 타겟에 반사되어 기지

그림 1 RIS 지원 ISAC 시스템 모형

국에서 수신된 신호  는 다음과 같다.         (1)

            (2)

여기서   는 RIS 반사 빔포밍 패턴,  ∼ 는
단말잡음,   ∼ 는 기지국안테나잡음벡터이다. 단말에서의
수신 SNR은    , 기지국은 최대비결합 수신 빔포밍
   를 적용 시 센싱 SNR은     와 같다.
본 연구에서는 [4]에서와 같이 통신 SNR 요구 조건 를 만족하면서 센
싱 SNR의 최대화를 목적으로 하는 다음의 문제를 고려한다.

      max      ≥   ≤     ∀     
     (3)

Ⅲ. ISAC 제한 조건 인지 적응 손실 딥러닝 기반 RIS 빔포밍

  본 연구에서는 문제 (3)의 해를 구하기 위해 [4]에 제안한 센싱 채널과
통신 채널의 상관도를 높이는 손실 함수를 개선한 딥러닝 기반 RIS 빔포

밍과 RIS 빔포밍이 주어졌을 때의 최적 송신 빔포밍 를 적용한다. 이
때 RIS 빔포밍을 위한 IBF-Net (ISAC beamforming neural network)은

그림 2와 같은 경량화된 CNN 구조를 따르며, 비지도 학습을 위한 제안

손실 함수는 다음과 같다.

        
                  (4)



그림 2 RIS 위상 도출을 위한 IBF-Net 기반 딥러닝 구조

이때  는 통신 SNR 요구 조건 에 따라 손실 함수에서 센싱 SNR
중요도를 변경하는 변수로 실험을 통해 다음의 함수를 제안한다.

  log  (5)

여기서     는 시그모이드(Sigmoid) 함수이다. 그림 3에서
보인 바와 같이 제안하는 손실 함수는 가 작을수록 가 커져 센싱
SNR에, 가 클수록 를 낮춰 통신 제약 만족에 비중을 둔다.
Ⅳ. 실험 결과

제안 기법의 성능 검증을 위해 기지국과 RIS 위치는 각각 (0,0), (195,0)

이고 통신단말과타겟의위치는각각 (175, 30), (175,-50) 일 때 모의실험

을 수행하였다. 각 채널은 경로손실이 주파수 2.4GHz 기준    log  (6)

인 모델을 사용하였으며 (단, d는 송수신 거리), 라이시안 계수가 10인 라

이시안 페이딩을 고려하였다. 기지국 안테나 수가  = 8이고 RIS 반사

소자 수가  = 32이다. 송신전력은 8dBm으로 설정하였으며, 가우시안

잡음 전력 ( )은 단말과 기지국 모두 동일하게–20dBm으로 가정하였
다.

먼저 그림 4에서 제안된 적응형 IBF-Net이 실제 타겟 방향으로 유효한

빔을형성하는지 검증하기위해, RIS 기준의빔패턴(Beam Pattern)을분

석하였다. RIS와 센싱 타겟이 각각 (195, 0) 및 (175, -50)에 위치할 때,

이론적인 타겟 각도는 약 -68.2이다. 그림 5에서 확인할 수 있듯이, 타
겟 각도에서 빔패턴 이득이 최대가 되는 것을 볼 수 있다. 이는 네트워크

가 채널 정보를 바탕으로 타겟 위치를 정확히 인지하고 RIS 반사 신호를

해당 방향으로 집중시키고 있음을 보인다.

그림 5는 통신 SNR 최소 요구 조건 에 따른 통신 SNR 외 센싱
SNR 를 보인 것이다. 그림에서 PropDL은 본 논문에서 제안하는 적응
형 가중치 딥러닝 기법 성능이고, 비교 대상으로는 무작위 위상(Random

RIS)과 준정부호 완화 (semidefinite relaxation) 기반의 반복 최적화 기법

(AO), [4]의 고정된 손실 가중치(=0.8)를 사용하는 기존 딥러닝 기법
(ConvDL)을 함께 보였다.

그림 5(a)에서 볼 수 있듯이 Random RIS와, 기존 ConvDL은 또한, 

가 증가할수록 통신 성능 요구 조건을 만족하지 못 하는 반면, 제안하는

PropDL은 최적화 기법 AO와 비슷하게 모든  구간에서 문턱값을 상회
하며안정적인결과를보장한다. 그에 따른센싱 SNR은 그림 5(b)에서 볼

수있듯이제안한 PropDL은통신제약을만족하지못하는 ConvDL과비

슷한수준의센싱성능을보임을볼수있으며최적기법인 AO 대비평균

약 90% 수준의 준수한센싱성능을달성하였다. 이러한성능은평균연산

속도가 146.690초인 AO 대비훈련된딥러닝모델은 평균 0.137초 만에최

적의 위상을 도출하여 제안 기법이 압도적인 실시간 처리 능력을 보유하

는 것을 볼 수 있다.

Ⅴ. 결론

본 논문에서는 RIS-ISAC 시스템의 빔포밍 최적화를 위해 통신요구 조

건에 따라 손실 가중치를 자동 조절하는 비지도 적응형 IBF-Net을 제안

하였다. 시그모이드 함수 기반의 가중치 모델을 통해 고정 가중치 방식의

한계를 극복하였으며, 실험 결과 제안 기법이 낮은 연산량으로도 통신 제

약을 만족시키며 준수한 센싱 성능을 달성함을 확인하였다.
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그림 3 통신 요구조건 (τc)에 따른 제안된 적응형 α 곡선

 
그림 5 최소 통신 SNR 문턱값에 따른 (a) 통신 SNR 성능 및

(b) 센싱 SNR

  

그림 4 통신 요구조건 (τc)에 따른 제안된 적응형 α 곡선


