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요 약

본 논문은 rotated surface code에서 논리 연산자 4클래스(   )를 예측하는 high-level 디코딩 기법을 채택하며, 큐비트별 신드롬 집계와
LUT 기반 오류 후보를 결합한 qubit-space 4채널 입력을 제안한다. 디코더는 CNN으로 국소 패턴을 추출하고, Transformer encoder로 전역 상관을
모델링하여효율적인학습을수행한다. Depolarizing 잡음 환경에서코드 거리 d ≥ 5 이상에서제안 디코더는 LER이 개선되었으며, d = 7에서 MWPM
대비 약 35%, 기존 CNN 대비 약 20% 낮은 오류율을 달성하였다. 또한, 재학습 없이 pure-Y 잡음에 적용했을 때, d = 7, p ≈ 0.1에서 MWPM 대비
약 73%, CNN 대비 약 41% 낮은 논리 오류율을 보여, 비교 기법 대비 성능 저하가 제한적임을 확인하며 잡음 분포 변화에 대한 강건성을 보였다.

Ⅰ. 서 론

대규모양자 컴퓨팅에필수적인 surface code에서 디코딩은 측정된 신드

롬(sydrome)으로부터 복원 연산을 결정하는 과정이다. 동일한 신드롬에

대응하는 물리 오류 패턴은 다수 존재하므로, 디코딩의 목표는 물리 오류

를 정확히식별하는 것이아니라 논리적실패확률을 최소화하는 복원방

법을 선택하는 데 있다. 본 연구는 이러한 관점에서 high-level decoding

기법을 채택하여, 신드롬으로부터 {   } 네 가지 논리 오류 클

래스 중 하나를 예측하는 문제로 디코딩을 다룬다.

최소 가중치 완전 매칭(minimum-weight perfect matching, MWPM)

기반 디코더는 surface code 구조를 활용해 널리 사용되지만, X형과 Z형

오류를 분리해 처리하는 특성으로 인해 결합 오류가 두드러지는 잡음 환

경에서는성능이제한될수있다. 이를 보완하기위해신경망기반디코더

가 제안되어 왔다.

한편 rotated surface code는 큐비트 효율이 높으나, 기하학적 배치로 인

해신드롬정보를학습모델입력으로정렬하기어렵다. 이러한입력표현

과 코드 구조의 불일치는 학습 효율과 디코딩 성능을 저해할 수 있다. 이

에 본연구는 신드롬을 데이터큐비트 공간에정렬한 입력 표현을기반으

로 하는 학습 기반 디코딩 프레임워크를 제안한다.

Ⅱ. 제안하는 방법

LUT 포함 qubit-space 입력 표현

Rotated surface code에서 관측 신드롬 s와 LUT(Lookup Table) 기반
기준 보정(pure error) 후보를 동일한 데이터 큐비트 좌표계(qubit space,

d×d)에 정렬하여 CNN 입력으로 사용할 4채널 격자 텐서를 구성한다. 본

연구에서 사용하는 qubit space 격자는 rotated surface code의 데이터큐

비트 좌표를 재인덱싱하여 구성한 것으로, 새로운 좌표 변환이나 보간을

도입하지 않으며 물리적 인접 관계를 보존한다. 입력은 검사행렬 기반 신

드롬 집계 특징과 LUT가 생성한 pure error로 이루어진다. 여기서 LUT

는 전체신드롬을키로직접조회하는완전테이블이아니라, 활성 신드롬

비트들의 기여 패턴을 모듈로-2로 합산하여 후보를 생성하는 선형(XOR)

LUT이다. LUT 후보가데이터큐비트위치에정의되므로 신드롬특징또

한 qubit space로 정렬하며, 이를 통해 syndrome grid 방식에서 발생하는

채널별 빈 칸과 입력 희소성을 완화한다.

본 연구에서는 rotated surface code의 검사행렬 ∈ × ,
∈ ×와 신드롬 ∈ , ∈로부터 데이터
큐비트별 집계 벡터   ∈를  ⊤,  ⊤로 정의
한다. 이때  , 는 각각 데이터 큐비트 에 인접한 안정자

(stabilizer) 중 활성 신드롬의 개수를 나타낸다. Rotated 구조에서타입별

최대 연결도가 2임을 반영하여  ,  로 정규화하고,

와 를 입력 채널로 사용한다.

본 디코더는 LUT로부터 신드롬에 대응하는 기준 보정값을 계산한 뒤,

그이후에도남는잔차오류의논리클래스만을분류하는 high-level 디코

딩 기법을 채택한다. 임의의 오류 는 =ㆍㆍ로 분해되며, 여기서

S는 stabilizer 성분, T는 신드롬으로부터 결정되는 pure error 성분

(lookup table로 구현), L은 논리 오류 클래스를 의미한다.
LUT 적용 이후 잔차에 포함된 stabilizer 성분은 논리 오류율에 영향을

주지 않으므로, 신경망은 잔차의 논리 클래스만 예측하도록 학습한다. 본

모델은 LUT가 산출한 pure error를 신경망의 추가 입력으로 제공함으로

써, LUT의 결정 규칙을 다시학습할필요없이 LUT 이후에남는논리적

분기만을 분류하도록 한다. 이는 입력과 출력의 정보 수준을 정합시켜 학

습 난이도를 낮춘다.

,  및 LUT로 산출된 pure error ,  는 모두 데이터 큐비트

인덱스 j에 대해정의되므로, 이를 동일한 d×d qubit-space 격자에정렬한

뒤 채널 방향으로 결합하여 4채널 입력 텐서를 구성한다. 채널 0과 1은

, 를, 채널 2와 3은 , 를 담는다. 이러한 입력 구성은 rotated



surface code의 국소적인접구조와전역상관을동시에활용할수있도록

하며, 격자내빈칸으로 인한입력희소성을완화한다. syndrome grid 방

식에서 발생하는 채널별 빈 칸과 입력 희소성을 완화한다.

CNN–Transformer 기반 디코더

제안디코더는 4채널 qubit-grid 입력으로부터논리 연산자클래스를 예

측하도록 설계되며, CNN 기반임베딩 모듈과 Transformer encoder를 결

합한다. 먼저 다층 합성곱 계층을 통해 국소 영역에서 syndrome count와

LUT 후보 사이의 상호작용을 특징으로 추출하고, 1×1 합성곱을 통해

d_model 차원의 임베딩으로 변환한다. 이후 격자 위치별 임베딩을 토큰
시퀀스로 펼쳐 Transformer encoder에 입력한다. Transformer의

self-attention은 격자 전역의상관관계를 학습하여, 오류 누적 패턴 및논

리 연산자 방향성과 관련된 장거리 구조를 반영한다. 최종적으로 분류 헤

드가 네 가지 논리 연산자 클래스에 대한 확률을 출력한다.

그림 1. 제안한 LUT 포함 입력 CNN–Transformer 디코더 구조.

Ⅲ. 실험 설정 및 결과

본 연구는 rotated surface code에서 코드 거리

d=3,5,7에 대해디코딩성능을평가하였다. 물리 잡음은 depolarizing 모델
을기본으로사용하며, 단일큐비트오류율을 p라 할때각 데이터 큐비트

에     오류가 각각 1−p, p/3, p/3, p/3의 확률로 독립적으로

적용된다고 가정한다. 각 샷에서 관측된 신드롬으로부터 검사행렬 기반

집계특징과 LUT 기반 기준 후보를 결합한 4채널 입력을구성하고, 모델

의논리클래스예측에따라보정을적용한뒤논리실패여부를판정하였

다.

성능 지표로는 논리 오류율(logical error rate, LER)을 사용하며, 이는

물리 오류율 p에서 디코딩 실패가 발생할 확률로 정의한다. 또한

pseudo-threshold p는 LER(p)와 p가 교차하는 지점으로 정의한다. 본 연

구에서는 이산적으로 측정된 데이터에서 LER(p)-p의 부호가 변하는 인

접 구간을 찾고, 해당 구간에서 선형 보간을 통해 pseudo-threshold를 추

정하였다. 비교 기준으로는 MWPM 디코더[1]와 CNN 기반 디코더[2]를

사용하였다.

Depolarizing 잡음 환경에서제안디코더는코드 거리 d≥5에서 MWPM
[1] 및 CNN[2] 대비더낮은논리오류율을보였으며, 대표적인물리오류

율(p≈0.1)에서 d=7 기준 MWPM[1] 대비 약 35%, CNN[2] 대비 약 20%

낮은 논리 오류율을 달성하였다. 이에 따라 pseudo-threshold 또한 일관

되게 개선되었으며 각 코드 거리에서의 비교 결과는 표 1에 정리하였다.

잡음 분포 변화에 대한 강건성을 평가하기 위해 pure-Y 잡음(Y 100%)

조건에서도 동일한 절차로 실험을 수행하였다. Depolarizing 잡음에서 학

습한 모델을 재학습 없이 pure-Y 조건에 적용했을 때, 제안 디코더는 비

교기법대비성능저하가제한적으로나타나잡음분포변화에대한강건

성을 보였다. 특히 코드 거리 d=7, p=0.10에서 MWPM[1] 대비 약 73%,
CNN[2] 기반 디코더 대비 약 41% 낮은 논리 오류율을 기록하였다.

Model d=3 d=5 d=7
(Depolarizing)

d=7
(Y 100%)

MWPM 0.0830 0.1034 0.1136 0.0618
CNN[2] 0.0964 0.1242 0.1263 0.0991
Proposed 0.0962 0.1281 0.1382 0.1231

표 1. MWPM[1], CNN[2], 제안 기법의 pseudo-threshold 비교

(Depolarizing;d=3,5,7) 및 Y-only 테스트(d=7).

그림 2. d=3,5,7에서 물리 오류율 대비 논리 오류율 비교및 d=7 잡음
조건 변화(Depolarizing/Pure-Y) 성능 범위.

Ⅳ. 결론

본논문은 rotated surface code 디코딩을논리 연산자 클래스 예측 문제

로 다루고, 신드롬 집계와 LUT 기반 기준 후보를 결합한 qubit-space 입

력 표현을 제안하였다. 제안 디코더는 depolarizing 잡음에서 MWPM 및

기존 CNN 기반기법대비향상된 논리오류율및 pseudo-threshold를 보

였으며, pure-Y 잡음에서도재학습없이제한적인 성능저하만을보여잡

음 분포 변화에 대한 일반화 가능성을 확인하였다. 향후에는 더 큰 코드

거리와 현실적인 잡음 모델로의 확장을 검증할 예정이다.
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