
Figure 1: The Proposed System model for ClarityNetSR. 
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Abstract 

Frames captured in real-world scenarios such as CCTV/surveillance, UAV/drone footage, and low-bitrate streaming are often 

degraded by a mixture of motion/defocus blur and limited spatial resolution, which reduces the interpretability of critical details. 

In this paper, we propose ClarityNetSR, an end-to-end joint Deblur-and-Super-Resolution (Deblur-SR) framework that directly 

reconstructs a sharp high-resolution frame from degraded observations. When short temporal neighborhoods are available, 

ClarityNetSR leverages alignment-aware multi-frame fusion to exploit temporal redundancy and recover finer details while 

reducing misalignment-induced ghosting. We train the model under realistic mixed degradations and evaluate it against SR-only, 

deblur-only, and two-stage baselines using standard fidelity and perceptual metrics. Results demonstrate improved sharpness and 

more coherent textures with fewer restoration artifacts, supporting the practical use of ClarityNetSR for real-world frame 

enhancement. 
 

1. Introduction 

    Real-world imaging systems frequently produce frames 

degraded by blur (motion/defocus), low spatial resolution, and 

compression artifacts [1]. This is common in settings such as 

CCTV/surveillance, dashcams/bodycams, drone imagery, and 

low-bandwidth streaming [2], where improving the clarity of a 

single frame can significantly increase interpretability [3]. 

Existing approaches typically treat deblurring and super-

resolution (SR) as separate problems; however, SR applied to 

blurred inputs can amplify artifacts, deblurring alone cannot 

recover missing high-frequency details, and sequential 

pipelines (deblur → SR) often accumulate errors [4]. To 

address these challenges, we propose ClarityNetSR, Fig: [1], 

an end-to-end joint Deblur-and-Super-Resolution (Deblur-SR) 

framework that directly reconstructs a sharp high-resolution 

frame from degraded observations. When adjacent frames are 

available, ClarityNetSR leverages temporal redundancy 

through alignment-aware fusion to better recover fine details 

while reducing ghosting artifacts. Experiments against SR-

only, deblur-only, and two-stage baselines demonstrate 

improved sharpness and detail reconstruction under realistic 

degradations involving blur, downsampling, and compression.  

2. System Model 

    Fig. 1 illustrates the overall pipeline of ClarityNetSR, an 

end-to-end framework that performs joint deblurring and 

super-resolution (Deblur-SR) for real-world degraded frames. 

We consider a target degraded frame and (optionally) a small 

temporal neighborhood from the same capture source (e.g., 

CCTV, dashcam, UAV footage, low-bitrate streaming). 

2.1. Degraded Observation Model 

Let 𝑥𝑡 ∈ 𝑅𝐻×𝑊×3 denote the unknown sharp high-

resolution (HR) latent frame at time 𝑡. The observed low-

quality low-resolution (LR) frame 𝑦𝑡 ∈ 𝑅ℎ×𝑤×3 is modeled 

as a composition of blur, downsampling, and codec/noise 

corruption:  

               𝑦𝑡 = 𝐶((𝑥𝑡 ∗ 𝑘𝑡)   ↓𝑠 + 𝑛𝑡)                       (1) 

where, 𝑘𝑡 is an unknown blur kernel (motion/defocus), *  

denotes convolution, ↓𝑠 is a downsampling operator with 

scale factor 𝑠, 𝑛𝑡 models sensor noise and residual 

perturbations, and C(.) represents compression distortion 

(e.g., blocking/ringing artifacts). This model reflects practical      

  

conditions where blur and resolution loss co-occur and are 

further affected by compression [4]. 

2.2. Multi-Frame Input (Optional Temporal Support) 

 To improve restoration of ambiguous details (e.g., faces, 

text edges), we exploit temporal redundancy when available 

[5]. Define a temporal window of 2K+1 frames centered at 𝑡: 

𝑦𝑡 = {𝑦𝑡−𝑘, … , 𝑦𝑡−1, 𝑦𝑡 , 𝑦𝑡+1, … , 𝑦𝑡+𝑘}                     (2)   

When only one single frame is available, the ClarityNetSR 

model reduces to the special case which is 𝐾 = 0. 

2.3. Multi-Frame Input (Optional Temporal Support) 

    Neighboring frames are not spatially aligned due to motion, 

parallax, and occlusions. We therefore introduce an alignment 

operator to map each neighbor 𝑦𝑡+𝑖 to the reference time 𝑡. Let 

𝑊(. ; 𝜃𝑦𝑡+𝑖)  denote an alignment function (e.g., deformable 

alignment or flow-guided warping) parameterized by  𝜃𝑡+𝑖: 

      𝑦̅𝑡+𝑖 = 𝑊(𝑦𝑡+𝑖 ; 𝜃𝑡+𝑖),      𝑖 ∈  −𝐾, 𝐾                     (3) 

Each aligned frame is encoded into feature space using a 

shared encoder 𝐸(⋅): 

                                     𝑓𝑡+𝑖 = 𝐸(𝑦̅𝑡+𝑖)                               (4) 

The set of aligned features is fused into a single representation 

via a fusion module Φ(.) (e.g., attention-based aggregation): 

                      𝐹𝑡= Φ({𝑓𝑡−𝐾 , … , 𝑓𝑡,… , 𝑓𝑡+𝐾})                    (5)   

This alignment-aware fusion helps recover fine details that 

may be missing or blurred in the reference frame 𝑦𝑡 .  

 

 

 

 

 

 

 

 

 

 

 



2.4. End-to-End Joint Deblur-SR Reconstruction 

    Given the fused representation F𝑡, ClarityNetSR 

reconstructs the HR output directly in a single network pass: 

                                    𝑥̂𝑡 = 𝐺(𝐹𝑡)                                 (6) 

where 𝐺(⋅)is the decoder/reconstruction head that jointly 

accounts for blur removal and resolution enhancement. So 

unlike sequential pipelines (deblur→SR), the proposed 

formulation learns a unified restoration mapping optimized for 

the final HR sharp output. 

3. Dataset and Training Setup  

    We train ClarityNetSR end-to-end for joint deblurring and 

super-resolution using paired clean HR frames  x𝑡 and 

synthetically degraded observations y𝑡 . Dataset contained 

approximately 𝑁 ≈ 10,000 high-quality RGB frames sampled 

from diverse scenes (day/night, indoor/outdoor, slow/fast 

motion). Following the degradation model in (1), each HR 

frame is corrupted by a randomized combination of: (i) motion 

blur and defocus blur via a sampled kernel  k𝑡 , (ii) 

downsampling by scale factor 𝑠 ∈ {2,4}, (iii) additive noise 

n𝑡, and (iv) compression artifacts simulated through re-

encoding at multiple quality levels. For the multi-frame 

setting, we sample a temporal window 𝒴𝑡 = {y𝑡−𝐾 , … , y𝑡+𝐾} 

from the same sequence (typically 𝐾 = 2, i.e., 5 frames). This 

enables the network to exploit temporal redundancy while 

learning alignment-aware fusion under realistic motion. The 

network is optimized using a weighted objective: 

     ℒ = 𝜆1ℒ𝑟𝑒𝑐 + 𝜆𝑝ℒ𝑝𝑒𝑟𝑐 +  𝜆𝑒ℒ𝑒𝑑𝑔𝑒(+𝜆𝑡ℒ𝑡𝑒𝑚𝑝)   (7) 

where ℒrec is an L1/Charbonnier reconstruction loss, ℒperc is a 

perceptual loss computed in a fixed feature space 𝜓(⋅) and 

ℒedge enforces sharper gradients; ℒtempis optionally used to 

reduce ghosting and improve temporal stability. We employ 

AdamW optimization with an initial learning rate of 1 ×
10−4(cosine decay), standard augmentations (random crops, 

flips, temporal reversal), and train for a fixed schedule (e.g., 

200–300 epochs) with batch size determined by GPU memory. 

4. Dataset and Training Setup  

    We evaluate ClarityNetSR on held-out data under both 

synthetic and realistic degradations that reflect operational 

imagery. Performance is reported using full-reference quality 

metrics: PSNR and SSIM, together with the perceptual metric 

LPIPS to capture visual fidelity beyond pixel-wise similarity. 

For multi-frame inputs, we additionally assess temporal 

robustness using a consistency score computed between 

reconstructed outputs and motion-aligned neighboring 

reconstructions, reflecting flicker and ghosting behavior. We 

compare ClarityNetSR against three categories of baselines: 

(i) SR-only methods applied directly to degraded inputs (ii)  

Deblur-only methods followed by bicubic upsampling, and 

(iii) Two-stage pipelines (deblur →SR). Across evaluations, 

ClarityNetSR achieves improved sharpness and detail 

recovery while reducing common artifacts such as ringing, 

residual blur, and misalignment-induced ghosting. Qualitative 

results show clearer edges and more coherent textures in 

challenging regions (e.g., faces, text, object boundaries), 

supporting benefit of end-to-end joint restoration with 

alignment-aware multi-frame fusion. 

 

 

5. Conclusion 

    This paper presented ClarityNetSR, an end-to-end 

framework for joint deblurring and super-resolution targeting 

real-world degraded frames commonly encountered in 

surveillance, vehicular cameras, drones, and bandwidth-

limited video systems. Unlike methods that treat deblurring 

and SR separately or rely on sequential pipelines, 

ClarityNetSR performs unified Deblur-SR reconstruction in a 

single network, reducing error propagation and suppressing 

artifact amplification. By incorporating alignment-aware 

multi-frame fusion, the proposed approach exploits temporal 

redundancy to recover details that are ambiguous or missing in 

a single degraded frame, while reducing ghosting effects 

caused by misalignment. Quantitative and qualitative 

evaluations against strong baselines show improved sharpness 

and detail reconstruction under mixed degradations involving 

blur, downsampling, and compression. Future work will 

explore broader real-world degradations (e.g., low-light noise 

and rolling-shutter effects), improved uncertainty estimation 

for reliability, and deployment-oriented optimization 

techniques. 
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