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Abstract

Navigating uncrewed aerial vehicles (UAVs) in human—-co-located environments, such as construction sites and
precision agriculture, requires perception systems capable of understanding complex dynamic behaviors. Conventional
perception systems predominantly rely on historical kinematic data to predict future obstacle trajectories. However,
these methods exhibit significant latency and fail to capture immediate state changes when facing sudden appearances
or abrupt orthogonal turns of human obstacles. To address these limitations, this paper proposes a dynamic-obstacle
perception framework that prioritizes instantaneous semantic cues over historical motion trends. We introduce an
instantaneous semantic heading vector directly derives from a vision—based pose estimation network. This semantic
heading vector allows the system to determine the direction of human movement and probable navigational intent,
independent of historical displacement. Experimental results demonstrate that incorporating semantic pose attributes
allows perception system to yield faster and more accurate heading estimation than purely kinematic baselines for
downstream trajectory prediction and safety planning in cluttered dynamic environments.
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cluttered environments remains a significant challenge
due to the unpredictable nature of human movements
and the limited computational resources available on
lightweight aerial platforms [1].

Existing solutions primarily rely on onboard RGB-D
sensors for dynamic obstacle detection and tracking
[2], [3]. While recent approaches have improved
detection through ensemble strategies or intent—based
planning [4], [5], they predominantly depend on
historical kinematic data to estimate future states.
These methods often exhibit significant latency and
struggle to react to abrupt directional changes, such as
orthogonal turns. In these scenarios, historical
kinematic data becomes insufficient or misleading.

To address these limitations, this paper presents a
dynamic-obstacle perception framework that
prioritizes instantaneous semantic cues over historical
kinematic trends. Unlike traditional methods, we utilize
vision—based pose estimation to derive a semantic
heading vector directly from skeletal keypoints. This
allows the system to determine navigational intent
independent of physical displacement, enabling faster
and more accurate trajectory prediction for safe UAV
navigation in dynamic environments. X

Fig.1: Dynamic-Obstacle Perception Framework

UAV navigation. The dynamic obstacle perception
module ensembles geometric detectors (U-depth,
DBSCAN) with a YOLO-Pose estimator to detect
objects and extract the heading vector for immediate
intent recognition. Detected agents are tracked and
identified as dynamic obstacles and subsequently
filtered from the map. Kinematic history fuses pose-—
derived semantic intent to forecast future states for
generating collision—free trajectories.

III. Methodology

The perception pipeline utilizes a pretrained pose
model to perform real-time top—down pose estimation.
Our framework extracts four fiducial keypoints from
the skeleton to define the torso plane: the left and right
shoulders, and the left and right hips.

These raw 2D pixel coordinates (u, v) are back-
projected into 3D space utilizing aligned median filtered
depth values Z.. The corresponding 3D coordinate Zr =
[X., Y. Z]7 in the camera optical frame is then
reconstructed using the pinhole camera model:
_(u—cy).Z, w—cy).Z,
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I. Proposed System

As illustrated in Fig. 1, the proposed framework
integrates perception, prediction, and planning for safe

where f, fyrepresent the focal lengths and c¢x, ¢y denote
the principal points of the camera intrinsic matrix.

The geometric human—heading is derived by
constructing two orthogonal vectors relative to the
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Fig.2: Illustration of Heading Estimation

torso. The horizontal shoulder vector Vs; between the

shoulders, and vertical spine vector Vsp are calculated

from 3D coordinates of the corresponding points. The

raw heading vector Nmaw is calculated as the cross

product of the shoulder and spine vectors, resulting in

a normal vector perpendicular to the torso plane.
Niaw = Van X Vg

To render this vector actionable, Nwaw is transformed
from the camera frame into the inertial world frame
using the camera's extrinsic orientation matrix Feam and
projected onto 2D ground plane to yield the final
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To ensure trajectory stability against high—frequency
pose jitter, we apply an Exponential Moving Average
(EMA) filter. This includes a consistency check where
the dot product between the previous and current
heading is evaluated. The filter resets for sudden turn
or pose flip when the directional change exceeds 90°
otherwise, the standard smoothing is applied:

Hi=a Hyy+ (1 —a).H,,y

Finally, the yaw angle required for trajectory prediction
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1s derived via the arctangent of the heading components.

IV. Results

The proposed method was implemented on ROS
platform using an Intel RealSense D435 camera and
yolol1ln—-pose. RViz visualizations in Fig. 3 confirm the
system performance. The ensemble detector
successfully identifies dynamic obstacles within blue
bounding boxes. Furthermore, the system accurately
computes the heading vector for various human
orientations. These vectors appear as blue arrows and
demonstrate the accurate estimation of directional
intent. The runtime of the system modules is detailed
in Table [, with measurements conducted on Intel NUC.
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Fig.3: Dynamic Detection with Human—heading

TABLE I: RUNTIME OF MODULES OF THE SYSTEM

System Module Runtime (ms)

0.015
15.23

Heading estimation
YOLO-Pose detection

V. Conclusion and Future Work

This paper presents an instantaneous dynamic -
obstacle perception framework for autonomous UAV
navigation. We utilized skeletal keypoints to derive
instantaneous heading vectors. This geometric
approach addresses the latency inherent in kinematic—
based intent estimation. Real-world experiments
demonstrated that our method yields fast and accurate
directional cues of human movements. Future research
will focus on integrating this semantic heading with
human-trajectory prediction model to enhance
autonomous UAV navigation in complex dynamic
environments.
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