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요 약  

 
단일 기지국 기반 실내 위치추정은 추가 인프라 없이 구현 가능하지만, 기존의 CSI 기반 방식은 대규모 MIMO 환경에서 

CSI 획득과 피드백 오버헤드가 커 실제 5G 운용에 적용하기 어렵다. 본 논문은 5G 운용 절차에서 단말이 획득 가능한 

RSRP 와 PMI 만을 입력으로 사용하는 딥러닝 기반 실내 위치추정 방법을 제안한다. PMI 가 포함하는 방향성 정보를 

RSRP 와 결합하여 공간 구분력을 확장하며, 기존의 완벽한 CSI 를 활용한 방식과 비교해 다양한 채널 조건에서 높은 

위치추정 성능과 강건성을 확인하였다. 

 

Ⅰ. 서 론  

단일 기지국 기반 실내 위치추정은 인프라 추가 

없이도 서비스를 제공할 수 있어 활발히 연구되어 왔다. 

기존 연구의 상당수는 기지국이 단말의 완전한 채널 

상태 정보(channel state information; CSI)를 획득할 수 

있다는 가정 하에, 채널 계수를 활용한 위치추정 기법을 

제안하였다[1], [2]. 그러나 대규모 MIMO 환경에서는 

안테나 수 증가로 채널 차원이 커지면서 CSI 피드백에 

따른 측정 자원 및 시그널링 오버헤드가 급증하여, 실제 

5G 운용에 적용하기 어렵다. 

이를 대체하기 위해 5G 에서 기본 제공되는 참조신호 

수신전력(reference signal received power; RSRP) 및 

참조신호 수신품질(reference signal received quality; 

RSRQ)만을 이용한 방법도 제안되었으나[3], [4], 이들 

지표는 공간 정보가 제한적이어서 복잡한 다중경로 

환경에서 정확도 저하가 발생할 수 있다. 반면 프리코딩 

행렬 인자(precoding matrix indicator; PMI)는 코드북 

기반 빔포밍에서 선택된 빔 인덱스로서 채널의 방향성 

정보를 간접적으로 포함한다. 따라서 본 논문에서는 5G 

운용 절차에서 단말이 획득 가능한 RSRP 와 PMI 만을 

활용한 딥러닝 기반 실내 위치추정 방법을 제안하며, 

완전 CSI 기반 방식 대비 다양한 채널 조건(특히 복잡한 

실내 다중경로)에서 높은 위치추정 정확도와 강건한 

성능을 보인다. 

 

Ⅱ. 본론 

우리는 다중입력단일출력(multiple-input single-output; 

MISO) 시스템을 고려한다. 기지국(base station; BS)은 

𝑀개의 안테나 원소로 구성된 균일 선형 배열(uniform 

linear array; ULA)을 사용하며, 단말(user equipment; 

UE)은 단일 안테나를 갖는다고 가정한다. 수신 신호는 

𝑦 = 𝐡𝐻𝐟𝑠 + 𝑛 

와 같이 정의되며, 𝐡 ∈ ℂ𝑀×1 는 채널 벡터, 𝐟 ∈ ℂ𝑀×1 는 

빔포밍 벡터, 𝑠 는 전력 |𝑠|2 = 1 인 송신 신호, 

𝑛~𝒞𝒩(0, 𝜎𝑛
2) 은 잡음이며 잡음 전력이 𝜎𝑛

2 인 복소 

가우시안 분포를 따른다. 채널은 가시선(line-of-sight; 

LoS) 성분과 비가시선(non-line-of-sight; NLoS) 성분을 

포함하는 라이시안(Rician) 페이딩 모델을  
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따르며[5], 𝐾는 라이시안 K 팩터이며, 𝐿은 비가시선의 

경로 개수, 𝑎𝐿𝑂𝑆와 𝛼𝑙은 각각 LOS 채널과 NLOS 채널의 

채널 이득이며 평균 전력은 1 을 가정한다. 𝜃LOS과 𝜃𝑙은 

각각 LOS 채널과 NLOS 채널의 방위각이다. ULA 의 

배열 응답 벡터(array response vector;)인 𝐚(𝜃)는  

𝐚(𝜃) = [1,… , 𝑒𝑗𝜅𝑑𝑚sin𝜃 , … , 𝑒𝑗𝜅𝑑(𝑀−1) sin𝜃]
𝑇

 

와 같이 정의되며[6], 𝜅는 파수이며, 𝑑는 인접 안테나 

원소 간 거리, 𝜃는 방위각을 나타낸다.  

 
그림 1. 실내 오피스 환경 



실험 환경은 그림 1 과 같이 DeepMIMO 의 실내 

오피스 시나리오를 기반으로 구성하였다[7]. UE 는 

0.2 m간격의 격자 형태로 배치되며, BS 는 그림 1 의 

BS3 에 위치한다고 가정한다. 또한 UE 및 BS 의 높이는 

각각 1 m와 3 m로 설정한다. 

UE 가 PMI 및 RSRP 를 획득하기 위해, BS 는 3GPP 

표준에서 정의된 이산 푸리에 변환(discrete Fourier 

transform; DFT) 코드북을 사용하여 빔포밍 벡터 집합을 

구성하고[8], 이후 BS 는 각 빔에 대해 순차적으로 

파일럿을 송신하는 빔 스위핑을 수행하고, UE 는 각 빔에 

대한 RSRP 를 측정한다. UE 는 측정된 RSRP 가 최대가 

되는 빔 인덱스를 PMI 로 결정한다. 

본 논문에서는 코드북 기반 빔 스위핑으로 획득 

가능한 빔별 RSRP 와 PMI 만을 이용하여 사용자의 

2 차원 위치 (𝑥, 𝑦)를 추정하는 딥러닝 기반 위치 추정 

방식을 제안한다. 제안 방식은 입력으로 선택된 𝑁개의 

RSRP 값과 PMI 를 사용하며, 이를 fully-connected 

neural network 에 입력하여 위치 좌표로 회귀하는 

형태로 추정한다. 비교를 위해 CSI 기반 기준 방법을 

함께 고려하며, 해당 방법은 채널 벡터의 실수부와 

허수부를 분리하여 신경망 입력으로 사용한다. 

기지국 안테나 개수는 𝑀 = 64 로 가정하고, 코드북 

크기도 64 로 설정한다. 빔포밍 벡터의 전력은 |𝐟|𝟐 = 1로 

정규화하며, 신호 대비 잡음 전력 비율(signal-to-noise 

ratio)는 𝛾 = 𝔼[𝐡/𝜎𝑛
2]로 정의한다. 위치추정 성능 평가는 

평균 절대 오차(mean absolute error; MAE)를 사용하며, 

학습 및 성능 비교에 동일한 지표를 적용한다.  

 
그림 2. RSRP 사용 개수에 따른 위치 추정 오차

 
그림 3. 제안 방식과 CSI 기반 방식과의 성능 비교 

 

그림 2 는 제안 방식에서 입력으로 사용하는 RSRP 개수 

𝑁에 따른 MAE 를 나타낸다. 𝑁이 증가할수록 위치추정 

오차가 감소하며, 라이시안 𝐾 팩터가 증가할수록(LoS 

성분이 우세할수록) MAE 가 전반적으로 낮아지는 경향을 

확인할 수 있다. 그림 3 은 SNR 𝛾와 𝐾팩터 변화에 따른 

CSI 기반 방법과 제안 방식의 성능을 비교한 결과이다. 

특히 낮은 SNR 구간에서 제안 방식이 CSI 기반 방식 

대비 더 낮은 MAE 를 보여, 잡음이 큰 환경에서도 

강건한 위치추정 성능을 확인할 수 있다. 

 

Ⅳ. 결론  

본 논문에서는 RSRP 와 PMI 만을 활용하는 단일 기지국 

기반 실내 위치추정 방법을 제안하였다. 제안 방식은 

코드북 기반 빔 스위핑으로 얻을 수 있는 측정치만으로 

동작하므로 CSI 피드백 오버헤드가 큰 대규모 MIMO 및 

5G 환경에 적합하다. 실험 결과, 제안 방식은 CSI 기반 

방식 대비 우수한 위치 추정 성능을 보였다. 이는 PMI가 

제공하는 방향성 정보가 제한된 참조신호 기반 입력의 

공간 구분력을 보완하여 위치추정 성능을 향상시킬 수 

있음을 시사한다. 
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