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요 약

최근의무력분쟁은현대전장에서 무인항공기(Unmanned Aerial Vehicles, UAV)가 수행하는결정적역할을 분명히 부각시켰으며, 특히 저비용 군집
드론이 기존의 미사일 기반 방공 체계를 무력화할 수 있는 능력을 입증하였다. 저가의 적대 드론을 고비용 요격 수단으로 대응해야 하는 상황에서
발생하는 경제적·전술적 비대칭성은, 적응적이며 비용 효율적인 안티드론 방어 시스템(Anti-Drone Defense Systems, ADS)으로의 패러다임 전환을
요구한다. 비례–적분–미분 제어 및 모델 예측 제어를포함한 기존 제어 기법들은 예측 불가능하고동적으로변화하는환경에서의 적응성이제한적이
라는 한계를 지닌다. 강화학습(Reinforcement Learning, RL)은 자기 최적화 정책 학습을 통해 대안이 될 수 있으나, 느린 수렴 속도로 인해 실시간
전장 환경에서 요구되는 신속한 의사결정을 심각하게 저해한다. 이러한 문제를 해결하기 위해 본 연구에서는 대규모 언어 모델(Large Language
Model, LLM)의 추론, 추상화, 계획 수립 능력을 강화학습 학습 루프에 통합한 LLM-유도 강화학습 기반 안티드론 시스템(Large Language Model–
Guided Reinforcement Learning–based Anti-Drone System, LRL-ADS)을 제안한다. 제안된 프레임워크는 LLM이 생성한사전 정보를정책 함수와
가치함수의초기화과정에동시에내재화함으로써, 보상 수렴속도를유의미하게가속화하고환경적응성을향상시키며, 자율 요격을위한해석가능한
정책생성을가능하게한다. 실험 결과는 LLM 기반추론과강화학습제어기의결합이차세대공중전장환경에적합한강인하고확장가능하며 에너지
효율적인 자율 방어 시스템을 구축하기 위한 새로운 기반을 제공할 수 있음을 시사한다.

Ⅰ. 서 론

21세기 이후의 전쟁 양상은 정보중심·비접촉·자율화된 전장으로빠르게

진화하고 있으며, 그 중심에는 무인항공기(Unmanned Aerial Vehicle,

UAV), 즉 드론이 자리하고 있다. 특히 러시아–우크라이나 전쟁은 드론

이 정찰 및 정밀 타격 수단으로서 전통적 무기체계를 압도할 수 있음을

보여주었으며, 저비용·고효율 구조의 드론이 전장 전반의 전략 균형을 바

꾸는비대칭 전력으로기능함을입증하였다 [1, 2]. 이러한 변화는현대 방

공체계가 직면한 새로운 기술적·경제적 위협의 본질을 드러낸다. 기존의

방공체계는 주로 지대공 미사일(Surface-to-Air Missile, SAM)이나 유

도탄요격시스템(예: Iron Dome)과 같은고가의요격체계에의존해왔다.

그러나이러한체계는고비용구조와제한된기동범위로인해, 소형 드론

의 대량 침입(Swarming)이나 기습적 공격에취약하다. 특히 단가 수천만

달러의 미사일로 수백 달러 수준의 드론을 요격하는 것은 경제적 비대칭

을 야기하여, 장기전 수행 능력을 근본적으로 저하시킨다 [3]. 이에 따라,

물리적 충돌 또는 네트포획 기반의 직접 요격을 수행하는 저비용·고기동

형 안티드론 시스템(Anti-Drone System, ADS)이 새로운 대안으로 제시

되고 있다 [4].

하지만 이러한 ADS 구현은 고전 제어기(Classical Controller)의 구조적

한계에 직면한다. 예를 들어, Proportional–Integral–Derivative (PID)

제어기나 Model Predictive Control (MPC)와 같은 폐루프제어기는 선형

근사및 정적환경을가정하기때문에, 실제 전장의비선형·동적 환경에서

는 적응성이 급격히 저하된다. 시스템 동역학적 특성이 변화할 때마다 제

어기를 재설계해야 하며, 이는 실시간성·경제성 측면에서 비현실적이다.

이에 반해 강화학습(Reinforcement Learning, RL)은 환경과의 상호작용

을 통해 정책을 스스로 학습함으로써, 사전 모델링 없이도 비선형 환경에

서 적응 가능한 제어를 수행할 수 있다 [5]. 그러나 기존 RL 기법은 보상

수렴이 느리고(수백만 회 이상의 상호작용 필요), 학습 초기의 무작위 탐

색으로 인해 정책 수렴 속도와 실시간 대응성이 제한되는 구조적 문제를

가진다. 이러한 단점은 전장의 시·공간적 변동이 빠른 실제 무인기 작전

환경에서 치명적인 제약 요인이 된다.

본 연구는이러한 RL의 근본적 한계를 극복하기 위해, 대규모언어모델

(Large Language Model, LLM)의 논리적 추론 및 맥락 이해 능력을 RL

의 학습 구조에 결합한 새로운 제어 패러다임을 제시한다. 제안된 LLM-

유도 강화학습(Large Language Model-Guided Reinforcement Learning,

LRL)은 LLM이 초기 정책을 ‘지도(Guidance)’하여 학습 공간을 효율적으

로탐색하고, 가치함수(Value Function) 학습의 초기조건을 고도화함으로

써 빠른 보상 값 수렴을 가능하게 한다. LLM은 학습 초기의 정책 학습

단계에서 정책 학습을더욱효율적으로 하여 더욱 강건한초기학습을 가

능하게 한다. 일반적인 강화학습은 최적 정책을 학습하기 위해 환경과의

수많은 상호작용을 필요로 한다. 그러나 LLM-유도 강화학습은 LLM의

강건한 추론 능력을 통해 초기 정책 학습에 있어 LLM의 도움 및 안내를

받아 더욱 빠른 학습 수렴을 가능하게 한다.

Ⅱ. LLM-Guided 강화학습

LLM-유도 강화학습 기반 ADS는 Partially Observable Markov

Decision Process (POMDP) 구조로 모델링되며, 상태(State)는 군용 드론

과 적 드론 간의 상대 거리, 잔여 에너지, 포획 여부로 구성된다. LLM은

지상 통제탑에서 초기 정책 을 생성하고, RL 에이전트는 이를 바탕으로

상태–행동 가치함수를 학습하여 최적정책을 획득한다.

이러한 초기 정책 주입은 무작위 탐색 대신 의미 기반 탐색

(Semantically Guided Exploration)을 수행하게하여, 학습 안정성과수렴

속도를 동시에 개선한다. 또한 에이전트는 누적 보상을 최대화하도록 설

계되어 있으며, LLM은 이보상의그래디언트방향을초기화 시점에서 최

적화 방향으로 유도한다



[그림 1] 알고리즘별 학습된 군용드론의 정규화된 보상값

Ⅲ. 성능평가

[그림 1]은 제안된알고리즘을사용하여훈련된군용드론의정규화누적

보상 추세를 벤치마크 방법과 비교하여 보여줍니다. Comp-1/2/3은 각각

Advantage Actor Critic (A2C), Reinforce, Deep Q-network (DQN)을

의미한다. 제안된 알고리즘과 벤치마크 모두에서 훈련이 진행됨에 따라

제안된 LRL-ADS로 훈련된 군용 드론이 가장 높은 정규화 보상 값을 달

성합니다. 반면, 벤치마크 알고리즘으로 훈련된 군용 드론의 보상은 증가

하고 결국 수렴하지만, 제안된 알고리즘으로 훈련된 드론이 달성한 보상

값에 비해 낮은 값에서 수렴합니다. RL 공식화에서 보상 함수는 군용 드

론의 행동을 원하는 목표로 안내하도록 미리 설계되어 있으므로 보상 값

이높을수록우수한훈련성능과강력한제어능력을나타냅니다. 수렴 후

에도 제안된 알고리즘은 Comp-1, Comp-2, Comp-3보다 각각 1.11배,

1.12배, 1.24배 더 높은 0.957의 가장 높은 정규화 보상 값을 달성한다. 여

기서 가장주목할 만한 점은 제안된알고리즘이 다른 벤치마크에 비해더

빠른 훈련수렴 속도를 보여준다는 것이다. 즉, [그림 1]에서볼 수있듯이

제안된 알고리즘은 가장 적은 에피소드 내에서 보상 수렴을 달성하여

LLM 기반 정책훈련의주요 장점을강조한다. 제안된알고리즘이달성한

우수한보상값은지상 지휘센터의 LLM 시스템을통해전장환경에서도

신속한 훈련을 가능하게 하는 견고한 ADS를 구축할 수있음을 나타낸다.

이러한실험적 결과는전장환경에서제안된알고리즘의 강건한안티드론

성능을 가짐을 의미한다. LLM은 학습 초기에 RL 에이전트인 군용 드론

이 효율적인 정책함수 학습을 할 수 있도록 도와준다. 이러한 LLM의 역

할은 안티드론임무를 수행하는 군용 드론이보다효율적으로 행동 공간

을 탐색하고 올바른 행동을 취할 수 있도록 도와준다.

iv. 결론

본 논문은 대규모 언어 모델의 추론·계획 능력을 강화학습의 정책 학습

과정에결합한 LLM-유도 강화학습기반안티드론 방공 시스템을제안하

였다. 제안된 방법은 LLM이 생성한 초기 정책을 RL 학습에 통합함으로

써 보상 수렴 가속을 달성하였다. 실험 결과, 기존 강화학습 기반 제어기

대비 수렴 속도와 제어 안정성이 현저히 개선되었으며, 실제 항공역학 모

델 기반 시뮬레이션에서도 강건성과 적응성을 유지하였다. 따라서 본 연

구는 지능형 군용 무인기 제어 및 자율 방공 시스템 설계의 핵심 기반 기

술로서, 향후 다중 에이전트 협력(Multi Agent Reinforcement Learning,

MARL)/LLM-기반 의사결정 프롬프트 최적화 등으로 확장될수 있는토

대를 마련하였다.
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