
A Data Model-Driven Load-Balancing Scheme in
Software-Defined Networking

Tom Vasseur∗, Zulfiyya Gurbanova†, Taegon Park†, Tejas Mhadgut‡, Jaehoon (Paul) Jeong†, and
Tae (Tom) Oh‡

∗Epita, †Sungkyunkwan University, ‡Rochester Institute of Technology
Email: tom.vasseur@epita.fr, q.zulfiyya.04@gmail.com, taegon1212@g.skku.edu, {tm3886, thoics}@rit.edu,

pauljeong@skku.edu

Abstract—Traffic congestion remains a significant challenge for
resource utilization in modern networks. This paper proposes
and implements a dynamic load-balancing system for private
Software-Defined Networking (SDN) deployments. Our approach
consists of a lightweight Python application that integrates
with an OpenDaylight controller to facilitate automated traffic
management. It operates in a closed-loop load-balancing control
through periodic network traffic analysis. Upon detecting a
traffic overload, our SDN system immediately enforces traffic
redirection by dynamically modifying OpenFlow rules.

Index Terms—Software-Defined Networking, Load Balancing,
OpenDaylight, RESTCONF, YANG, Network Automation.

I. INTRODUCTION

In the era of massive data consumption, the primary chal-
lenge for network administrators is no longer just connectiv-
ity, but intelligent resource orchestration. Static networking
architectures often fail to cope with bursty traffic patterns,
leading to severe bottlenecks where specific servers are over-
whelmed while others remain idle. Software-Defined Net-
working (SDN) [1] addresses this inefficiency by centralizing
control logic, enabling programmable traffic engineering that
is not possible in traditional hardware-centric networks [2].

However, simply deploying an SDN controller is insufficient
for optimal performance. Many existing solutions rely on
reactive OpenFlow rules, which can introduce latency as
the controller processes every new flow request individually.
A more sophisticated approach involves proactive network
management, in which the network’s state is continuously
monitored and optimized. This requires leveraging standard
Northbound interfaces like RESTCONF and data modeling
languages like YANG, which allow external applications to
interact with the network’s logical structure rather than just
its packet-forwarding tables [3].

In this paper, we propose a novel, application-driven load-
balancing framework built on the OpenDaylight (ODL) con-
troller. Unlike internal controller modules or static scripts,
our design utilizes an external Python-based orchestration
engine that establishes a feedback loop with the network.
This application queries real-time statistics via RESTCONF,
evaluates server load against pre-defined threshold values,
and dynamically pushes updated flow rules to redistribute
traffic only when necessary. We implemented this logic in
a Mininet [4] emulation environment to demonstrate that a

threshold-based external control loop can significantly reduce
server congestion and improve overall response times com-
pared to static distribution methods.

II. DESIGN

The proposed system is implemented by leveraging the
topology information provided by the SDN controller and
continuously collecting network traffic statistics (e.g., incom-
ing, forwarded, and dropped packets) from each server-facing
OpenFlow port through RESTCONF. Fig. 1 shows a frame-
work of a Load Balancing System. Based on the network
traffic statistics, the system computes a static load percentage
using a predefined load calculation model. It determines the
congestion level of each server by comparing the calculated
value against a fixed threshold. Whenever the system detects
that a server is overloaded, it dynamically modifies the routing
rules to redirect traffic to an alternative server.

The system architecture consists of four main components:
(1) Collector, which periodically retrieves port-level traffic
statistics from ODL’s operational data store; (2) Load An-
alyzer, which computes the server’s network load by deriv-
ing throughput and utilization from the collected byte and
packet counters; (3) Flow Rule Generator, which constructs
OpenFlow flow entries that redirect traffic destined for an
overloaded server to a different backend; (4) Dynamic Load
Offloading Engine, which evaluates threshold conditions and
installs flow rules through RESTCONF to enforce runtime
traffic redirection.

The Collector fetches real-time port statistics (e.g., trans-
mitted bytes, received bytes, and dropped packets) at fixed
timestamps. In the Load Analyzer, the system computes the
utilization by comparing the current and previous measure-
ments and converting the delta values into throughput and
percentage-based load. A higher calculated load value indi-
cates a sudden increase in traffic directed toward that server.

When the load exceeds the predefined threshold, the Flow
Rule Generator produces a redirection rule that rewrites the
destination IP address of incoming flows to an alternative
server. The Load Offloading Engine then installs this rule
into the OpenFlow flow table by issuing a RESTCONF
PUT request to the controller’s configuration datastore. Once
deployed, the switch immediately begins forwarding traffic to
the backup server.



Fig. 1. A Framework of a Load Balancing System

The entire process is implemented in Python and operates
continuously, enabling real-time monitoring and dynamic traf-
fic steering with minimal control overhead.

III. IMPLEMENTATION

To validate our proposed load-balancing framework, we
developed a comprehensive prototype consisting of three main
components: a custom network topology emulated in Mininet,
an OpenDaylight (ODL) SDN controller, and an external
Python-based orchestration application. This section details the
setup and the logic used to enforce dynamic traffic manage-
ment.

A. Experimental Environment

Our experimental setup uses two distinct virtual machines
(VMs) to simulate a realistic separation between the control
and data planes.

• VM 1 (Controller): It hosts the OpenDaylight controller
(Chlorine release). It acts as the centralized brain of the
network.

• VM 2 (Data Plane): It hosts the Mininet emulation
environment and our custom Python orchestration scripts.

B. Traffic Generation and Testing

To stress-test the implementation, we used iPerf to generate
traffic from the clients to the servers. The test scenario
involved initializing high-bandwidth streams (100 Mbps) from
both clients targeting a single server to force a congestion
scenario, verifying that our application correctly detects the
threshold breach and installs the necessary redirection rules.

IV. EVALUATION

To validate the system, we monitored real-time traffic han-
dling through the Python orchestration console. As shown in
Fig. 2, the system successfully detects when Server 1 exceeds
the defined threshold (reaching 1019.67 Mbps). The applica-
tion immediately triggers a mitigation routine, confirmed by
the “Rule injection status: 200” log entry, which indicates
successful communication with the OpenDaylight controller.
Subsequent readings show a significant load reduction on

Server 1 (dropping to 204.05 Mbps) as traffic is redistributed
to Server 2, proving the effectiveness of the automated redi-
rection logic.

Fig. 2. The Output of a Python Load Balancing Application

This external application-plane approach offers significant
flexibility, allowing administrators to write complex logic
in Python without modifying the controller’s internal code.
However, it introduces latency due to the overhead of HTTP
RESTCONF polling compared to native internal modules.
Research by Shalimov et al. [5] highlights this trade-off, noting
that while Northbound Interfaces ensure interoperability, they
are generally slower than internal Southbound interactions for
processing high-frequency flow events.

V. CONCLUSION

This paper presented a hybrid load-balancing framework
that integrates an OpenDaylight controller with an external
Python-based orchestration engine. By leveraging the REST-
CONF/YANG interface, our solution effectively automates
traffic monitoring and flow redirection. Experimental results
demonstrate that the system enables dynamic resource opti-
mization and congestion relief, offering a programmable and
vendor-neutral alternative to static routing configurations.

ACKNOWLEDGMENTS

This work was supported by the Institute of Information
& Communications Technology Planning & Evaluation (IITP)
grant (No. RS-2024-00398199) and the National Research
Foundation of Korea (NRF) grant (No. 2023R1A2C2002990)
funded by the Ministry of Science and ICT (MSIT), South
Korea. Jaehoon (Paul) Jeong is the corresponding author.

REFERENCES

[1] Q. Du, X. Cui, H. Tang, and X. Chen, “Review of load balancing
mechanisms in sdn-based data centers,” Journal of Computer and Com-
munications, vol. 12, no. 1, pp. 49–66, 2024.

[2] M. Hamdan, E. Hassan, A. Abdelaziz, and A. Elhoseny, “Intelligent
load balancing techniques in software defined networks: A survey,”
Electronics, vol. 9, no. 7, p. 1107, 2020.

[3] M. D. Tache, O. Pascutoiu, and E. Borcoci, “Optimization algorithms in
sdn: Routing, load balancing, and delay optimization,” Applied Sciences,
vol. 14, no. 14, p. 5967, 2024.

[4] Mininet, “Mininet: An instant virtual network on your laptop,” 2022,
accessed: 2025-05-15. [Online]. Available: http://mininet.org/

[5] A. Shalimov, D. Zuikov, D. Zimarina, V. Pashkov, and R. Smeliansky,
“Advanced study of SDN/OpenFlow controllers,” in Proceedings
of the 9th Central & Eastern European Software Engineering
Conference in Russia, 2013, pp. 1–6. [Online]. Available: https:
//dl.acm.org/doi/10.1145/2556616.2556618

http://mininet.org/
https://dl.acm.org/doi/10.1145/2556616.2556618
https://dl.acm.org/doi/10.1145/2556616.2556618

	Introduction
	Design
	Implementation
	Experimental Environment
	Traffic Generation and Testing

	Evaluation
	Conclusion
	References

