Reasoning LLLM-based Security Policy Generation
for the I2NSF Framework

Quoc Pham-Nam Ho*, Yeonwoo Park, Sangwon Seof, Damian Munoz Diaz*, Prasad Wasudeorao Adhau®,
Jachoon (Paul) Jeong', and Tae (Tom) Oh®
*Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, Republic of Korea
TDepartment of Computer Science and Engineering, Sungkyunkwan University, Suwon, Republic of Korea
iDepaItment of Electrical Engineering, Ibero University, Mexico City
§School of Information, Rochester Institute of Technology, Rochester, NY, USA
Email: {hpnquoc, rchl, tommy2419, pauljeong} @skku.edu, a2265877 @correo.uia.mx, {pa9876, thoics} @rit.edu

Abstract—Cloud security services rely on declarative policies
for access control, but manually authoring XML-based I2NSF
Consumer-Facing Interface (CFI) policies is error-prone due to
complex schema constraints and contextual conditions. While
Large Language Models (LLMs) can generate code, they often
produce semantically incorrect or schema-violating policies. This
paper proposes a closed-loop framework combining Chain-of-
Thought (CoT) prompting with XSD validation to translate
natural-language intents into compliant I2NSF CFI policies.
This framework decomposes requests, fetches geographic context,
generates draft XML via LLM, and iteratively refines it using
schema feedback. A preliminary case study shows our approach
reliably yields valid, constraint-complete policies where one-shot
LLM generation fails.

Index Terms—Large language models, I2NSF, YANG, security
policy generation, XML schema, iterative refinement, verification.

I. INTRODUCTION

Cloud security governance requires precise translation of
high-level policies (e.g., temporal or geographic restrictions)
into machine-enforceable formats. The IETF I2NSF frame-
work defines the Consumer-Facing Interface (CFI) using a
YANG-based data model [1]-[3] for an XML policy. It re-
quires manual, tedious authoring and demands deep expertise,
but a naive LLM-based generation approach may yield the
policies that are syntactically plausible policies, but schema-
invalid or semantically incomplete.

We present a schema-aware, closed-loop pipeline that gen-
erates verified I2NSF CFI policies from natural language. By
integrating Chain-of-Thought (CoT) reasoning with iterative
XSD validation, our system ensures outputs are both struc-
turally compliant and semantically aligned with user intent.
Contributions include: (i) a closed-loop policy generation
framework; (ii) tight coupling of CoT prompting with XSD
validation and self-correction; and (iii) a case study demon-
strating feasibility for time- and geography-aware policies.

II. BACKGROUND AND RELATED WORK
A. Reasoning with LLMs

Chain-of-Thought (CoT) prompting [4] improves LLM per-

formance on reasoning tasks by encouraging step-by-step

decomposition. It can interpret ambiguous phrases like “office
hours” into precise time ranges before policy generation.

B. I2NSF and Schema Definition

The I2NSF CFI model uses YANG [5] and is serialized into
XML governed by i2nsf-cfi-policy.xsd. This schema
enforces strict hierarchy and data types, serving as the ground
truth for policy validation.

C. Related Work

Existing I2NSF tools assume valid inputs and focus on CFI-
to-NFI translation [6]. LLM-based configuration tools often
lack rigorous schema enforcement, risking over-permissive or
malformed rules. Our work bridges this gap by integrating
structured reasoning with iterative, schema-driven validation.

III. PROPOSED METHODOLOGY

Our closed-loop pipeline (Fig. |1)) comprises four phases: (1)
Language Decomposition, (2) Policy Generation with CoT, (3)
Schema Validation, and (4) Iterative Refinement. The LLM
acts as a reasoning engine, guided by prompts that include
decomposed tasks, geographic context, and prior validation
errors.

A. Language Decomposition

The first step transforms the user’s high-level instruction
into a structured task description.

« Intent Extraction: Identify the core action (e.g., block,
allow) and target (e.g., services, departments, regions).

o Parameter Mapping: Map temporal, geographic, and
contextual phrases (e.g., “during office hours”) to explicit
fields (e.g., 09:00-17:00, Mon—Fri) aligned with I2NSF
CFI attributes, using few-shot prompt templates.

B. Policy Generation with Chain-of-Thought

Once decomposed, the LLM generates the full XML policy
document. We employ Chain-of-Thought prompting to guide
the generation process. By forcing the model to articulate
its reasoning steps before generating code, the system en-
courages the XML hierarchy (<policy> — <rule> —
<condition>) to be planned logically rather than purely
probabilistically.

|_

| High Level Instruction

Language
Decomposition

1 Guided 1

r 1
| Prompting :_—’[Generation]4_[

: Reason : : Draft Policy :
1 | 1 1

Related data
query

r--
: Report :

Return

Fig. 1. Overall closed-loop pipeline for I2NSF high-level policy generation.

C. Schema Validation and Feedback Loop

The generated XML is validated against the offi-
cial i2nsf-cfi-policy.xsd using a dedicated schema
checker. This is not merely a syntax check but a rigorous
structural verification. If validation fails, the engine generates
a detailed error report containing the error type and location.

The system then enters a refinement loop: this error report
is appended to the following prompt, instructing the LLM to
self-correct the specific violation while preserving the original
intent. The logical flow is formalized in Algorithm

The system features a Python backend and Next.js frontend.
The backend includes:

o Policy Generator: Orchestrates decomposition, CoT

prompting, and XML assembly.

o Region Mapping: Uses region. json to resolve geo-

graphic names to I2NSF-compatible identifiers.

o Schema Validator: Uses 1xml for strict XSD confor-

mance checking.

IV. CONCLUSION AND FUTURE WORK

We demonstrated that integrating CoT reasoning with XSD
validation enables reliable generation of I2NSF CFI policies
from natural language. The approach ensures schema com-
pliance and improves interpretability via reasoning traces.
Limitations include static geographic mappings and support
limited to time- and location-based policies. Future work will
incorporate dynamic data sources, fine-tuned open models for
lower latency, and support for richer CFI features (e.g., user
attributes, DPI rules).

ACKNOWLEDGMENTS

This work was supported by the Institute of Information
& Communications Technology Planning & Evaluation (II'TP)

Algorithm 1 Iterative I2NSF CFI Policy Generation and

Refinement

Require: Natural language intent I, schema S, max iteration
N, max

Ensure: Validated XML policy Py or Failure

1: Pyss < DECOMPOSE(]) > extract_requests

2: Dygeo — COLLECTGEO(Pryoks) > geo_collect (uses

region.json)

3: (meh Exml; Txml; steps) —
LLM_GENERATE(Pasks, Dgeo) > generate_policy
SAVETOFILE(Pym))
iter < 0
while iter < Ny.x do

xsd_report < VALIDATEXSD(Py, S) >
validate_xml_full_report
8: (valid, fb) <~ LLM_VERIFY (Pml, Exmiy Txmi; Pasks)
> verify_policy

Nk

9: if valid and zsd_report has no errors then

10: return Py,

11: else

12: (Pimts Exmi, Txmi, steps) —
LLM_FIX(mel7 FEymt, Txmi, fb) > ﬁX_pOliCy

13: SAVETOFILE(Pym1)

14: iter < iter + 1

15: end if

16: end while
17: return Failure

grant (No. RS-2024-00398199) and the National Research
Foundation of Korea (NRF) grant (No. 2023R1A2C2002990)
funded by the Korea government (MSIT). Jaechoon (Paul)
Jeong is the corresponding author. GitHub Open Source:
https://github.com/jachoonpauljeong/KICS2026-Group2.

REFERENCES

[1] S. Hares, D. Lopez, M. Zarny, C. Jacquenet, R. Kumar, and J. P.
Jeong, “Interface to Network Security Functions (I2ZNSF): Problem
Statement and Use Cases,” RFC 8192, Jul. 2017. [Online]. Available:
https://www.rfc-editor.org/info/rfc8192

[2] D. Lopez, E. Lopez, L. Dunbar, J. Strassner, and R. Kumar, “Framework
for Interface to Network Security Functions,” RFC 8329, Feb. 2018.
[Online]. Available: https://www.rfc-editor.org/info/rfc8329

[3] J. P. Jeong, C. Chung, T.-J. Ahn, R. Kumar, and S. Hares, “I2NSF
Consumer-Facing Interface YANG Data Model,” Internet Engineering
Task Force, Internet-Draft draft-ietf-i2nsf-consumer-facing-interface-dm-
31, May 2023, work in Progress. [Online]. Available: https://datatracker.
ietf.org/doc/html/draft-ietf-12nsf-consumer-facing-interface-dm-31

[4] J. Wei, X. Wang, D. Schuurmans, M. Bosma, B. Ichter, F. Xia, E. H. Chi,
Q. V. Le, and D. Zhou, “Chain-of-Thought Prompting Elicits Reasoning in
Large Language Models,” in Advances in Neural Information Processing
Systems, vol. 35. Curran Associates, Inc., 2022, pp. 24 824-24837.
[Online]. Available: https://proceedings.neurips.cc/paper_files/paper/
2022/f11e/9d5609613524ect4£15af0f7b3 1abcad- Paper-Conference.pdf

[5] M. Bjorklund, “YANG - A Data Modeling Language for the Network
Configuration Protocol (NETCONF),” RFC 6020, Oct. 2010. [Online].
Auvailable: |https://www.rfc-editor.org/info/rfc6020

[6] P. Lingga, J. Jeong, J. Yang, and J. Kim, “SPT: Security Policy
Translator for Network Security Functions in Cloud-Based Security
Services,” IEEE Transactions on Dependable and Secure Computing,
vol. 21, no. 6, pp. 5156-5169, 2024. [Online]. Available: https:
/ldoi.org/10.1109/TDSC.2024.3371788

https://github.com/jaehoonpauljeong/KICS2026-Group2
https://www.rfc-editor.org/info/rfc8192
https://www.rfc-editor.org/info/rfc8329
https://datatracker.ietf.org/doc/html/draft-ietf-i2nsf-consumer-facing-interface-dm-31
https://datatracker.ietf.org/doc/html/draft-ietf-i2nsf-consumer-facing-interface-dm-31
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://www.rfc-editor.org/info/rfc6020
https://doi.org/10.1109/TDSC.2024.3371788
https://doi.org/10.1109/TDSC.2024.3371788

	Introduction
	Background and Related Work
	Reasoning with LLMs
	I2NSF and Schema Definition
	Related Work

	Proposed Methodology
	Language Decomposition
	Policy Generation with Chain-of-Thought
	Schema Validation and Feedback Loop

	Conclusion and Future Work
	References

