AXZE 2E2 A2HE 3t Deadline-Aware TOPSIS 7|8t AA &Y 7|9

IElS| OH ,

-1 O

[O RPN
T oW

A

Zolrjati, FoIthetia, «2yItjat
barkjungae@kookmin.ac.kr, 1104py@kookmkin.ac.kr, *hmkim@kookmin.ac.kr

A Deadline-Aware TOPSIS-Based Scheduling for Real-Time Inference Systems

Park Jungae, Yoon SooYeon, Kim Hyeokman*

Kookmin Univ, Kookmin Univ, *Kookmin Univ

2 o

NA] oM} Faf'd g Afe|Ae Ak b Abdat chofet Azt S0 Qs a3AQl AY AAE0] BaXolt:. 12t 7]Ee] dd
\Sye)

i 71 27153 Z14e 9 obsly, Meldial, Ay Sl 2he Al

EvC U271 uv

o™

2200014 IR Fe BASH] Xttt £ w2 ol=iet eAS EAN

L O 1Tu oo=&

03 BMstY tE QoS 7|21} deadline 9IZHES £33t Deadline-Aware TOPSIS(DA-TOPSIS) AA|Z2] 71HS AJotstth Aot 7|H-L x|,
deadline TESE, A|AH] H5lS S5K 02 ygfsto] AQS A0 FHlsict Algd o)A 7|8k g Aut, £AF 7HA0] 0.08% o]siQl 1¥s} E7goflAl
RULE ¥ EDF A#AE2]9] deadline miss ratio?} Z|tf 0.4871x] 225] Z713t 6, DA-TOPSISE S Z7104] miss ratioS 0.08~0.15 %0
SAsH 71E 9 7]1E 2 TOPSIS ]9k 719 ofjd] 71 9F9AQl deadline THS 452 B3t

27E% 715 deadlineo|ut A2 Ak 22 T 71z0] 7]gistod, &
g 24E ¥eht A ¥ ol 45 AokE EQItH3]. EDFe
deadline 915 SM L 2750lAI2 GPU Hsit A1) 252 Wil
2} AL RS T QCN4) (5. OF 71F QA1 7159 TOPSISE %
20 g5 RS 13T 4 lo, 71E A oA deadline YI7H=7} 37
5| WHEA] A1) 2 P olfet FHIE AEAlos FAshy,
deadline 917t S £315 Deadline-Aware TOPSIS(DA-TOPSIS) AAE
3 7152 AlRIRict

I.&&8
OR] 317 719 DNN & Aul AL B 2o} QoS 7|58 Ut A2] 7
52 o), A2 012 it 3w BeSo] Bajg YIRE S0 we
7| 748¥e] 1. Q)r}. Jetson Xavier2} TX29} -2 SIA] H7of|A = Agte A4t
Atdat 22 tjeZ0 2 9151 deadline, latency, GPU load, QoS &
QA7F A0 AA1EF 500l L2 UIAIT 14 7]E AAET
2 97 T 715 0] 719kt glof ofeish 54 §42 F-2a] vF
She 1AA A 7RI 2 A olefgt s E AERo R B

=2
CHS7IE VIR AAEF Y B/ S5 Sl e Bl

[ mju

noro
o R

|

il

>
sa T

|

ks

2.1 Heterogeneous Model Mix 3739] £4]

A #igj) Addo| A= MobileNet, Inception Z@u} Z4o] HAH BAte o GPU
AREEO] Aot RElS0] X H]&-5 XA 0 2 ZIIA7 |0 AAE 9] ¢

Model Heterogeneity Experiment (tx2)
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GPU Threshold Experiment (tx2)
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