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요 약 

 
본 논문은 리튬이온 배터리의 실시간 SOH 예측을 위해 EIS 데이터에서 온도 및 SOC 영향을 배제한 SOH 대표 인자를 

선정하는 기법을 제안한다. 열화 실험을 통해 다양한 온도·SOC 조건에서 EIS 데이터셋을 구축하고, DRT 변환으로 피크 

특성을 추출한 후 상관 분석, mRMR, LASSO 를 적용하여 SOH 민감 인자를 도출하였다. 선정 인자를 입력으로 하는 MLP 

회귀 모델은 학습·검증·테스트 분할과 교차 검증을 통해 우수한 일반화 성능을 보였으며, 전체 피처 대비 경량화와 빠른 

수렴을 달성하였다. 본 프레임워크는 실시간 BMS 에서 EIS 기반 SOH 진단을 위한 효과적인 솔루션으로 활용 가능하다. 

 

Ⅰ. 서 론  

최근 전기차, 에너지 저장 시스템(ESS), 그리고 휴대용 

전자기기 등 다양한 산업 분야에서 리튬이온 배터리의 

수요가 급격히 증가하고 있다. 이러한 배터리의 사용 

확산과 함께 안전성, 신뢰성, 수명 예측의 중요성이 더욱 

부각되고 있으며, 운용 중 발생할 수 있는 성능 저하나 

열폭주와 같은 이상 현상을 사전에 예측하고 방지하는 

기술의 필요성이 커지고 있다. 

리튬이온 배터리의 내부 상태를 정밀하게 분석하기 

위한 진단 도구 중 하나로 전기화학 임피던스 

분광법(Electrochemical Impedance Spectroscopy; 

EIS)이 널리 활용되고 있다. EIS 는 전극-전해질 계면 

반응, 전하 전달 과정, 저항 및 확산 특성 등 다양한 

내부 정보를 주파수 영역에서 분석할 수 있는 강력한 

기법이다. 과거에는 실험실 환경에서만 측정이 

가능했지만, 최근 센서 및 통신 기술의 발전으로 실제 

운용 중에도 실시간으로 EIS 데이터를 취득할 수 있는 

환경이 마련되고 있다[1]. 

그러나 실시간으로 수집되는 EIS 데이터는 방대한 

양과 복잡한 비선형 특성을 지니고 있어 전통적인 신호 

해석이나 등가회로 모델링만으로는 배터리 상태를 

정확히 평가하기 어렵다. 이러한 데이터로부터 유효한 

특징을 추출하고 상태를 예측하기 위해서는 딥러닝 같은 

고도화된 데이터 기반 접근법이 필요하다[2]. 

본 연구에서는 실시간 데이터 스트리밍 기반 전기화학 

임피던스 분광 데이터를 활용한 리튬이온 배터리 상태 

예측용 딥러닝 모델을 제안한다. 제안 모델은 운용 중에 

연속적으로 측정되는 EIS 데이터를 입력으로 활용하여, 

배터리의 주요 상태 지표(SOC, SOH 등)를 실시간으로 

추정하는 것을 목표로 한다. 

Ⅱ. 본론  

본 논문에서는 18650 원통형 50E 셀을 대상으로 

배터리 열화 실험을 체계적으로 수행하여 EIS 기반 SOH 

예측을 위한 데이터셋을 구축하였다. 실험은 온도(0°C ~ 

55°C, 10°C 간격)와 SOC(100% ~ 0%, 5% 간격) 조건을 

다양하게 변화시키며 진행되었으며, 배터리 열화 정도를 

정밀하게 제어하기 위해 초기 상태부터 SOH 80%까지 

2% 단위로 총 13 개의 상태별 EIS 데이터를 수집하였다. 

각 열화 단계에서 완전 충·방전 사이클(0.5C-rate, 충전 

차단 전압 4.2V, 방전 차단 전압 2.5V)을 반복한 후, 

항온 챔버를 이용하여 지정된 온도 조건에서 SOC 별 

EIS 측정(100 mHz ~ 10 kHz 주파수 범위)을 

수행하였다. 측정된 데이터는 Nyquist plot 등을 통해 

데이터 품질을 확인한 후, 노이즈 필터링 과정을 거쳐 

후속 분석에 활용되었다. 그림 1 은 전체 실험 프로세스 

및 제안된 알고리즘의 흐름도를 나타낸다. 

 

 
그림 1 실험 프로세스 및 제안된 알고리즘 흐름도 



수집된 EIS 데이터로부터 온도 및 SOC 의 영향을 

배제하고 SOH 와만 관련 있는 핵심 인자를 선정하기 

위해 Distribution of Relaxation Times(DRT) 변환을 

1 차적으로 적용하였다. DRT 변환을 통해 EIS 

스펙트럼을 relaxation time(τ ) 축으로 재표현한 후, 각 

relaxation peak 에 대한 위치(τ _peak), 높이(H_peak), 

넓이(A_peak), 피크 면적 비율 등 12 개의 정량적 피크 

특성을 초기 피처 세트로 추출하였다. 이러한 DRT 기반 

피처는 EIS 의 물리적 의미(SEI 층 성장, 전하 전달 저항 

변화 등)를 반영하면서 고차원 데이터를 압축하는 데 

효과적이다. 

초기 피처 세트에 대해 알고리즘 기반의 특징 선택 

기법을 적용하여 SOH 대표 인자를 도출하였다. 먼저, 각 

피처의 SOH 와의 상관성을 분석한 후, 온도·SOC 변화 

시 변동성이 낮은 피처만을 1 차 후보로 선별하였다. 

이어서 mRMR(minimum redundancy– maximum 

relevance) 알고리즘을 통해 피처 간 중복성을 

최소화하면서 SOH 관련성을 최대화하는 후보 세트를 

구성하였고, LASSO 회귀 모델(α =0.1)을 학습시켜 

계수가 0 에 가까운 비중요 피처를 자동 제거하였다. 

최종적으로 상위 4 개 인자를 SOH 민감 인자로 

선정하였다. 

선정된 SOH 대표 인자를 입력으로 하는 배터리 상태 

예측 딥러닝 모델을 설계하였다. 본 연구에서는 비선형 

회귀 성능이 우수하고 구현이 간결한 다층 

퍼셉트론(MLP) 구조를 채택하였다. 모델은 입력층(4 개 

노드) → 1st layer(128 노드, ReLU) → 2nd layer (64 

노드, ReLU 및 Dropout 0.2 적용) → 3rd layer (32 노드, 

ReLU) → 출력층(1 개 노드, SOH)으로 구성되었으며, 

Adam 옵티마이저(lr=0.001)와 MSE 손실 함수를 

사용하여 200 epoch 동안 학습을 진행하였다. 전체 

데이터셋은 학습:검증:테스트를 7:1.5:1.5 비율로 

분할하여 사용하였으며, Leave-One-Out 교차 검증을 

통해 온도·SOC 변화에 대한 모델의 일반화 성능을 

평가하였다. 그림 2 는 설계된 MLP 모델의 구조를 

도식화하여 나타낸다. 

 
그림 2 배터리 SOH 예측을 위한 MLP 모델 

 

 
그림 3 실제 SOH 및 예측 SOH 비교 

방법 피처 수 RMSE MAE 

전체 피처  12 16.78 14.82 

선택 피처 4 5.6 5.4 

 

표 1 피처 선택에 따른 SOH 예측 성능 비교 

 

제안된 선정 파라미터와 예측 모델의 유효성을 

검증하기 위해 성능 평가를 수행하였다. 먼저 파라미터 

선정 결과, 전체 12 개 피처를 모두 사용했을 때보다 

선별된 4 개 피처를 사용했을 때 모델의 학습 수렴 

속도가 약 20% 향상됨을 확인하였다. 예측 정확도 

측면에서는, 테스트셋에 대해 RMSE(Root Mean Square 

Error) 1.64, MAE(Mean Absolute Error) 1.12 를 

달성하였으며, 결정 계수(R²)는 0.99 이상을 기록하였다. 

특히 온도와 SOC 가 변동하는 조건에서도 예측 오차의 

편차가 크지 않아, 선정된 인자가 SOH 만을 강건하게 

반영하고 있음을 입증하였다. 표 1 은 기존 전체 피처 

사용 시와 제안된 선택 피처 사용 시의 성능 비교 

결과를 요약하며, 그림 3 은 실제 SOH 와 예측 SOH 

간의 도식화를 통해 높은 예측 일치도를 보여준다. 

 

Ⅲ. 결론  

본 논문에서는 실시간 EIS 스트리밍 데이터를 활용한 

리튬이온 배터리 SOH 예측을 위해, 온도 및 SOC 에 

영향을 받지 않고 SOH 와 밀접한 관련이 있는 DRT 

기반 핵심 인자를 선정하는 기법을 제안하였다. 제안된 

인자를 활용하여 설계된 MLP 기반 예측 모델은 다양한 

운용 조건에서도 높은 정확도로 SOH 를 추정하였으며, 

기존 전체 피처 사용 대비 우수한 성능을 입증하였다. 

이는 EIS 데이터의 고차원성을 효과적으로 압축하면서 

물리적 해석이 가능한 SOH 대표 인자를 발굴한 점에서 

의의가 있으며, 실시간 배터리 관리 시스템(BMS) 구현에 

기여할 수 있는 경량화 된 SOH 진단 방법으로 활용될 

전망이다. 향후 팩 수준 데이터와 실제 운행 환경에서의 

확장 검증이 필요하다. 
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