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Abstract—Addressing the gap in long-term IoMT sustainabil-
ity, we propose RemoteCare-EAF, an energy-aware federated
learning framework that models per-client battery evolution and
role heterogeneity. By integrating a lightweight CNN-GRU dual-
stream model with a risk-driven adaptive sensing policy, the
system optimises duty cycles based on clinical risk. Results
demonstrate role-dependent energy dynamics and an energy-
accuracy frontier, establishing a foundation for sustainable,
privacy-preserving IoMT monitoring.

Index Terms—Energy-aware, federated learning, IoMT, mon-
itoring, battery sustainability, adaptive sensing.

I. INTRODUCTION

IoMT-based remote care enables continuous monitoring,
but it faces a critical constraint: the finite battery life of
devices. Energy depletion leads to client dropout, resulting in
significant gaps in clinical coverage. While Federated Learning
(FL) enhances privacy, current frameworks often optimise for
short-term accuracy, neglecting (1) the long-term evolution
of battery states and (2) role heterogeneity, where devices
consume energy at varying rates [1]]. Furthermore, reliable
monitoring requires joint modeling of physiological and net-
work behavior [2]]. These challenges motivate RemoteCare-
EAF, a framework that treats battery sustainability as a primary
constraint to ensure secure and valid clinical deployment.

II. METHODOLOGY

Fig. (1] illustrates the overall RemoteCare-EAF system ar-
chitecture, highlighting multimodal sensing at IoMT clients,
secure federated training over encrypted channels, and battery-
aware coordination at the aggregation server.

A. Dual-Stream Cyber—Clinical Model and System Architec-
ture

RemoteCare-EAF utilizes a dual-stream CNN-GRU archi-
tecture, prioritizing the GRU for its low memory footprint and
fast convergence on resource-constrained hardware to facilitate
joint cyber-physical modeling. [2].

Let X' denote network telemetry features and XP™*
physiological measurements for client i. Modality-specific en-
coders extract representations that are fused for joint inference:

h; = Concat (fcnn(X{‘et), fgru(thySD ) ey

where fenn () and fgu(-) denote lightweight encoders for
network and physiological modalities, respectively. The fused
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Fig. 1. System architecture of RemoteCare—-EAF. IoMT clients perform
dual-stream cyber—clinical inference and participate in secure, energy-aware
federated learning under battery constraints.

representation h; feeds task-specific heads for cyberattack
detection and health-state prediction.

B. Energy-Aware Federated Learning with Battery Evolution

We consider role-heterogeneous clients (attack-only, health-
only, hybrid) with finite batteries. Let Ei(r) be client ¢’s energy
consumed in FL round r (computation + communication +
security overhead). Battery evolves as:

B = max(0, B ~ B} 2)

This enables explicit sustainability analysis and participation
fairness (dropout occurs when BZ@ = 0). The global model
is updated via weighted aggregation of participating clients,
following standard FedAvg principles [3].

C. Secure Training and Transport

RemoteCare-EAF integrates a deployment-oriented secu-
rity stack: DP-SGD for privacy, TLS 1.3 for authenti-
cated/encrypted transport, and TEE-based secure aggregation
for protected server-side computation. These mechanisms are
treated as deployment constraints whose overhead contributes
to E in (@).
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TABLE I
CENTRALIZED VS. FL PERFORMANCE (FINAL-ROUND METRICS).

Setting Attack Acc. Health Acc.
Centralized 0.7563 0.6891
Federated (DP-FedAvg) 0.8756 0.5149

D. Clinical-Risk-Driven Adaptive Sensing

To conserve energy, RemoteCare-EAF employs a risk-
driven adaptive sensing policy that modulates the sensing
interval dt;(t) based on the predicted probability of a critical
health state r;(t), extending the interval to dt,., during low-
risk periods to re(dl)lce d}l%t%y

(Crmcal | X;(1)). 3)
Then the sensing interv 1s updated 3
mma > H
dt;(t) = 4)
dtmaxa Ti(t) <K,

where dtin < dtmax and k is a decision threshold.
E. Experimental Setup and Configuration

We simulated NV = 20 heterogeneous clients using UNSW-
NB15 (network) and MIMIC-III (clinical) datasets. Hardware
energy profiles EZ.(T) represent Raspberry Pi 4 and ESP32 de-
vices. FL hyperparameters include 50 communication rounds,
E = 5 local epochs, learning rate n = 0.01, and a DP-noise
multiplier o = 0.1.

ITI. RESULTS AND DISCUSSION

A. Centralized vs. Federated Benchmarking

Table[[|compares centralized training against federated train-
ing (final-round metrics), showing improved attack detection
under FL while highlighting health-task constraints under
current pairing and role imbalance, a known challenge in
multimodal IoMT settings [2].

B. Battery Sustainability and Energy Fairness

Fig. 2] illustrates the longitudinal battery dynamics enabled
by [@). Attack-heavy clients deplete fastest due to larger work-
loads and security/communication overheads, while lighter
roles retain higher residual energy. This motivates role-aware
participation policies and energy-aware stopping.

C. Energy-Accuracy Trade-Off (Frontier)

Fig. [B] shows an energy—accuracy frontier: attack accuracy
improves with cumulative energy at first, then saturates, indi-
cating diminishing returns. This provides a decision tool for
selecting FL horizons under battery constraints, consistent with
energy-aware FL design goals []1]].

IV. CONCLUSION

RemoteCare—EAF demonstrates that sustainable IoMT Re-
moteCare requires federated learning designs that explicitly
account for battery evolution, client heterogeneity, and secu-
rity overheads. Results reveal strong role-dependent energy
depletion and an energy-accuracy trade-off, motivating energy-
aware stopping and role-aware participation policies. Although
the evaluation is limited by synthetic hybrid pairing, tabular
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Fig. 2. Residual battery statistics across rounds (mean/min/max over clients).
Role heterogeneity yields unequal depletion; high-workload clients approach
dropout first.

Energy-Accuracy Trade-off (Avg Battery vs Attack Accuracy)

Global Attack Accuracy
o © © © o o
g 2 % S & =
N F 3 3 8 0B

o
S
S

o
o
&

1800 1825 1850 1875 1900 1925 1950
Average Battery (mAh)

Fig. 3. Energy—accuracy trade-off: accuracy (final-round) vs cumulative
energy. Beyond moderate horizons, gains diminish while sustainability cost
rises.

physiological features, and the absence of energy harvesting,
these constraints bound absolute accuracy without undermin-
ing the validity of the proposed energy-aware framework and
instead motivate future extensions.
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