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Abstract—Privacy regulations and data silos obstruct the
centralised aggregation of health records for global epidemic
intelligence. This paper evaluates Federated Learning (FL) as
a privacy-preserving alternative to centralised modelling. Inte-
grating five data modalities—clinical, mobility, environmental,
search trends, and policy markers—across 10 jurisdictions,
we benchmark a decentralised FedAvg paradigm against a
centralised baseline using identical model architectures and
training data. Results show that the federated model achieves
a Mean Absolute Error (MAE) of 12.61, outperforming the
centralised baseline (MAE: 33.49) by 62%.

Index Terms—Federated Learning Security, Byzantine At-
tacks, Blockchain, Polygenic Risk Score, Rare Variants

I. INTRODUCTION

Predictive epidemic intelligence integrates multi-source
digital signals—including mobility, search trends, and en-
vironmental data—to forecast disease dynamics [1[]. While
a Centralised Oracle provides a theoretical performance
ceiling, strict privacy mandates and data silos often preclude
the pooling of sensitive records [2]]. Federated Learning (FL)
offers a privacy-preserving alternative by maintaining data
locality. However, it introduces a privacy-utility gap and
convergence challenges due to the non-IID nature of regional
health data [3].

Recent research has increasingly focused on integrating
multi-source digital signals—including mobility patterns and
search trends—to enhance the timeliness and accuracy of
epidemic forecasting models [4], [5]. Federated Learning
(FL) has emerged as a promising solution to these silos,
though existing comparative studies often focus on single-
modality clinical data rather than the heterogeneous, multi-
modal feature sets required for robust epidemic intelligence

This paper evaluates FL against centralised architectures
using a 15-country longitudinal dataset. We quantify the
performance trade-offs across multi-modal features, demon-
strating that decentralised systems can capture the majority
of centralised predictive utility without compromising data
sovereignty. The paper is organised as follows: Section
details our methodology; Section presents results; and
Section [IV] discusses policy implications.
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Fig. 1. System architecture for multi-source epidemic intelligence. The

Centralised Oracle (Top) aggregates raw data, while the Federated Paradigm
(Bottom) maintains data sovereignty by exchanging local model parameters
() instead of raw data

II. METHODOLOGY

This section details the data integration pipeline and the
computational architectures used to evaluate the transition
from centralised to decentralised epidemic intelligence.

A. Data Integration and Feature Engineering

We utilize a multi-modal dataset curated from 15 juris-
dictions [4], temporally aligned to a daily grid. For each
jurisdiction ¢ at time ¢, the feature vector x; ; integrates five
normalized modalities: (i) Clinical, (ii) Mobility, (iii) Envi-
ronmental, (iv) Search Trends, and (v) Policy. The resulting
global feature tensor is defined as X € RVXT*D where
N = 15, T represents the total time steps, and D denotes
the aggregate feature dimensionality.

B. Computational Paradigms

We evaluate the impact of data decentralisation using a
common deep-learning backbone fy designed for multivari-
ate time-series forecasting. The Centralised Oracle serves
as our performance baseline, assuming a hypothetical en-
vironment with unrestricted access to the aggregate dataset
Diotar = UD;. In this configuration, the model has global
visibility of all jurisdictional features, allowing for joint
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optimisation via global stochastic gradient descent (SGD) to
minimise the Mean Squared Error:
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In contrast, the Federated Paradigm (FedAvg) maintains

absolute data sovereignty by keeping feature tensors local to

each jurisdiction. Training is coordinated through an iterative

protocol where the central server first broadcasts the current

global weights §(") to all participants. Each jurisdiction i

then optimises a local model ; on its private partition D;.

Finally, the server aggregates these local updates to compute
the global model for the subsequent round:

N

Ori1 = 0, 2)
where n; /n represents the relative contribution of each client
based on their local sample size. This iterative process allows
the model to learn from the global data distribution without
the raw records ever leaving their original silos.

C. Experimental Configuration

Both paradigms utilise a 128-unit hidden layer, a 1073
learning rate, and a 70/30 temporal split for training and
testing. The evaluation focuses on the privacy-utility gap,
measured by the degradation in Mean Absolute Error (MAE)
and R? scores in the federated setting relative to the cen-

tralised baseline.
III. RESULTS AND DISCUSSION

The performance evaluation across 15 jurisdictions quan-
tifies the operational trade-offs between centralised data
aggregation and privacy-preserving decentralisation.

A. Performance and the Privacy-Utility Gap

Experimental results demonstrate that the federated
paradigm substantially outperforms centralised training under
controlled conditions. The centralised baseline achieved a
final Mean Absolute Error (MAE) of 33.49 and a best MAE
of 23.20 over 30 epochs, with a final loss of 20333.68.
In contrast, the federated paradigm (FedAvg) reached a
final MAE of 12.61 and a best MAE of 9.48 within 30
communication rounds, as shown in Table [I}

TABLE I
PREDICTIVE PERFORMANCE COMPARISON

Paradigm Rounds/Epochs  Final MAE  Best MAE  Final Loss
Centralised 30 33.49 23.20 20333.68
FedAvg 30 12.61 9.48 343.95

B. Convergence and Operational Feasibility

Convergence analysis reveals distinct optimisation trajec-
tories between paradigms. The centralised baseline exhibits
gradual improvement but stabilises at substantially higher
error rates, achieving a best MAE of 23.20. In contrast, the
federated paradigm demonstrates rapid initial convergence,
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Fig. 2. Convergence curves showing training loss versus communication
rounds for Centralised and Federated paradigms.

reaching a best MAE of 9.48 within the first 10 communi-
cation rounds, as illustrated in Figure E}

These findings proffer Federated Learning as a viable
alternative to centralised surveillance. By maintaining 100%
data sovereignty, the federated approach bypasses the legal
barriers of data silos. The robustness of the MAE score
suggests that multi-source digital signals are sufficiently
resilient for decentralised weight aggregation in global, real-
time epidemic intelligence.

IV. CONCLUSION

This study evaluated the performance trade-offs between
a centralised Oracle and a Federated Learning paradigm for
multi-source epidemic intelligence. Our findings demonstrate
that the federated approach captures the predictive utility
of a centralised baseline while maintaining absolute data
sovereignty across jurisdictional boundaries, and the ability
to circumvent the legal and ethical constraints imposed
by data silos, which currently obstruct global surveillance.
Future work will investigate advanced aggregation strategies
further to minimise the impact of statistical heterogeneity on
model convergence.
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