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Table I: 2429 92 2 A% H L

Method Throughput Cycle Time Tardiness Utilization WIP Level Setup Time Queue Time
(lots /day) (days) (%) (%) (lots) (hrs /day) (days)

FIFO 0.20 53.62 100.00 88.77 184.00 1763.59 53.60

Selector= 2.40 40.72 79.00 86.76 90.20 1416.00 40.70

only RL

Proposer= 0.08 56.99 100.00 88.73 198.60 1748.06 56.97

only RL

DQN 2.10 38.56 62.88 81.09 92.40 1331.75 38.54

GenAI-RL 2.60 33.45 38.13 79.07 81.80 1189.21 33.43
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