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요 약

본 논문은 기존의 × 1채널 신드롬 격자 입력을 × 1채널 격자로 확장하고, 신드롬
위치 사이에 pure error 정보를 주입하는 방식인 Proposed-CNN을 제안한다. 동일한 데이터 생성 및 평가 조건에서
MWPM, FFNN, CNN, Proposed-CNN을 비교하여 논리 오류율(LER)과 pseudothreshold를 분석한다. 제안하는 방식은
단순한모델규모확장이 아니라측정된 신드롬에 대응하는 pure error의 구조적단서를 반영함으로써,   인 surface
code의 물리 오류율 를 0.07부터 0.13까지 0.01 간격으로 변화시키며 논리 오류율을 측정한 결과 CNN 알고리즘 대비
평균 8.94%의 상대 성능 향상을 보였다.

Ⅰ. 서 론

큐비트는양자컴퓨터에서정보를저장하는기본단위이며, 양자 계산과

정이 멈춰 있거나 어떤 연산이 적용되지 않는 상태에서도 잡음에 취약하

다. 따라서양자정보를보호하기위한우수한 QEC 코드를설계하는것은

양자 컴퓨터를 구축하는 데 있어 중요한 과제이다[1][2].

Rotated surface code의 high-level decoding[3][4]에서는 임의의오류를∙∙로 분해한다. High-level decoding은 이들 중 신드롬으
로부터 결정 가능한 pure error인 를 분리하고 남은 논리 연산자 ∈    를예측하는 4-class 분류 문제로 환원한다. 여기서 는항
등 연산자로서 논리적 오류가 발생하지 않았다는 것을 의미한다. 는 비
트 반전, 는 위상반전, 는 와 가 동시에 이루어짐을 의미하는 논
리적 연산자이다. 노이즈 환경이 데이터 큐빗에 미친 영향이 이러한 논리

적 연산자 적용과 같으면 논리적 오류가 발생했다는 것을 의미한다.

본 논문은 기존 디코더의 입력 표현을 개선하기 위해, 기존의× 1채널 신드롬 격자 입력을× 1채
널 격자로 확장하고, 신드롬 위치 사이에 pure error에 해당하는 정보를

주입하는 Proposed-CNN 디코더를제안한다. 채널 수를 증가시키지 않으

면서도, 신드롬과 pure error 단서를 동일한 2차원 격자 상에 배치함으로

써 CNN의 국소컨볼루션 연산이오류의국소연결구조를더직접적으로

학습하도록 유도한다.

본 논문은 MWPM, FFNN, 기존 CNN, Proposed-CNN을 동일한 데이

터 생성 및 평가 조건에서 비교한다. 주요 평가 지표는 물리 오류율 에
따른 논리 오류율 곡선과 논리 오류율이 물리 오류율과 같아지는 지점을

의미하는 pseudothreshold이다.

격자 확장 자체의효과와 pure error 주입의 효과를 분리하기 위해, pure

error를 제거한 scaled-CNN을 함께 제시하여 Proposed-CNN의 기여를

정량적으로 분석한다.

Ⅱ. 본론

1. 문제 및 비교군 설정

본 논문은 rotated surface code의 게이트/측정/회로/상태 준비 노이즈

를 고려하지 않고, 데이터 큐빗에독립적인 depolarizing 오류만을 가정하

므로 한 번의 신드롬 측정만 이루어지면 된다. 본 논문의 목표는 측정된

신드롬으로부터 논리 연산자 ∈   를 예측하는

4-class 분류이다. High-level decoding 관점에서 임의의 오류는∙∙로 분해하며, 여기서 는 stabilizer, 는 신드롬 로부
터 결정적으로 얻을 수 있는 pure error, 은 논리 연산자이다. 논문[4]의
pure error 산출은 최적 해를 보장하지는 않지만, 신드롬 길이에 선형인

계산량으로 데이터 큐빗에 대한정보를 구성할수 있어 제안 모델의 입력

으로 사용했다.

비교하고자 하는 디코더들은 다음 네 가지다.

(i) MWPM: 매칭 알고리즘 기반의 디코더.[5]

(ii) FFNN: 신드롬을 벡터 형태로 입력받는 다층 퍼셉트론.[3]

(iii) Baseline-CNN: 단일 채널 격자에 신드롬만 배치하는 CNN.[4]

(iv) Proposed-CNN: 입력 격자를 확장하고, 신드롬 위치 사이에 pure

error 정보를 주입하는 CNN.

2. Baseline-CNN

기존 MWPM과 FFNN 디코더는 격자 구조를 충분히 반영하지 못하며,

CNN 모델에서 X/Z 신드롬을 분리해 depolarizing noise에 취약하거나 여

러 채널 입력으로 데이터 큐빗 정보를 포함시켜 입력 복잡도를 증가시킨

다.

논문[3]에서 제안한 디코딩 방식은 1채널의 입력을 가진다. 이는 데이터

큐빗 이외에 발생하는 오류 상황에서는 여러 번의 측정으로 다채널 입력

이 필요하기 때문에 확장성을 고려한 형태이다. 또한 X/Z 신드롬을 분리



하지 않아 X와 Z 사이에 상관관계가 있는 노이즈 모델에서 유리하다.

신드롬의격자 구조를그대로구현하면불규칙한 형태를 가지게되기때

문에, 사이에 incoherent value를 채워 넣어 정방구조를 만든다. 이때

ReLU 활성화와 입력 정규화를 위해 격자를 채우기 위한 값 은 다음으
로 한다.

(i) incoherent value 위치의 은 음수
(ii) 신드롬 격자 위치에서 오류 감지 여부를 나타내기 위해 은 0과 1
사이의 두 값

또한국소적인패턴을분석하기위한 × 의필터크기와, 좀더전
역적인 패턴을 분석하기 위한 × 의 필터 크기인 두 합성 곱 층을
구성한다. 필터의 개수 는 충분한 패턴 식별 능력을 확보하면서 과도
한 복잡도를 피하도록 실험을 통해 구한다.

3. Proposed-CNN: Pure-error Interpolated

본 논문은 데이터 큐빗에 대한 정보인 pure error를 포함하면서 복잡도

를 줄이는 방법을 제안한다. 제안하는 모델은 1채널의 입력을 가지며, 입

력 채널의 크기는 ×로 한다. (0, 0)부터 (짝수, 짝수)
위치의격자에신드롬정보가위치하며, (홀수, 홀수)인 개의 격자 위에
pure error 정보가 위치한다.

(i) pure error 정보를 주기 위해 X/Z 중 하나의 오류만 발생한 데이터

큐빗 위치의 은 0.5로 X/Z 오류가 모두 발생한 경우 은 1로, 나머지
의 은 0이 되도록 한다.
(ii) 합성곱 층은 pure error 정보와 전역적 패턴 분석을 위한 ×크
기의 필터와 국소적 패턴 분석을 위한 ×크기의 필터로 구성한다.
격자 확장은 feature map의 면적 증가로 연산량과 파라미터가
증가한다. 따라서 성능 향상이 단순 입력 해상도 증가 때문인지, 아니면

pure error 정보 삽입으로 인한 구조적 이점인지 분리하기 위해, 본 논문

은 pure error 위치에 =0을 적용한 scaled-CNN과 Proposed-CNN의
비교 결과를 제시한다.

4. 실험 및 평가

모든 학습 기반디코더는 depolarizing noise 환경에서 물리 오류

율 를 0.07부터 0.13 범위에서선택하여 데이터큐빗에 오류를 생성했고,
1000만 개(중복 포함)의 샘플로 학습했다.

(a) (b)

그림 1. Surface code의 physical error rate 대비 logical error rate 비

교. ((a)    (b)   )

d MWPM FFNN CNN Proposed-CNN
3 0.0830 0.0973 0.1012 0.0971
5 0.1040 0.1157 0.1185 0.1257

표 1. 디코딩 알고리즘별 다른 code distance에서 pseudothreshold 비교

그림 1(a)에서   인 surface code를 대상으로 알고리즘별 성능을 비
교한다. 전체 가능한신드롬 패턴의개수는 개로 대부분의 패턴이 학습
데이터에 포함돼 Proposed-CNN은 FFNN, CNN 알고리즘과 비슷한 성

능을 보인다. 다만 MWPM은 X/Z 오류의 발생이 독립이라고 가정해

depolarizing noise 환경에서 상대적으로 낮은 성능을 보인다.

그림 1(b)에서    인 경우에 대해 디코딩 알고리즘의 성능을 비교한
다. 제안한 CNN 기반 디코딩 알고리즘이 가장 낮은 논리 오류율을 보이

며, 그다음으로 CNN, FFNN, MWPM 순인 것을 알 수 있다.

Ⅲ. 결론

본 논문은 surface code one-shot 디코딩에서 MWPM, FFNN, CNN,

Proposed-CNN을 동일 조건으로 비교하고, 기존 CNN의 입력 표현을 에서  로 확장하면서 pure error 정보를 interpolation
방식으로 주입하는 Proposed-CNN을 제안하였다. 제안 방법은 신드롬과

pure error 구조 단서를동일한 2D 격자상에서처리하도록 하여 CNN 알

고리즘과같은입력채널수를가지면서확장성을유지한다. 또한제안방

법은   에서는 다른 머신러닝 디코더와 비슷한 성능을 보이지만  에서 CNN 알고리즘 대비 상대 성능이 평균 8.94% 향상되었고,
pseudothreshold 또한 증가했다. 향후연구로는 제안 입력 표현을 유지하

면서 초기 downsampling 또는 경량 conv 블록을 도입해 연산량 증가를

완화하는 방향을 고려할 수 있다.
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