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요 약  
사족로봇은 험지 보행, 재난 구조, 산업 현장 점검 자동화 등 다양한 분야에서 활용 가능성이 높아지며 

활발히 연구되고 있다. 본 연구는 사족로봇 보행에서 외부 감각 정보 (Exteroceptive Information)가 보행 
성능에 미치는 영향을 실험적으로 분석한다. 이를 위해 고유 감각 정보 (Proprioceptive Information)만을 

사용하는 Blind 모델과 외부 감각 정보도 함께 사용하는 Scandot 모델을 비교한다. 두 모델은 NVIDIA 

IsaacLab 시뮬레이션 환경에서 동일한 보행 명령 조건하에 다양한 난이도로 구성된 디딤돌 지형을 

대상으로 평가한다. 실험 결과, Scandot 모델은 Blind 모델 대비 모든 난이도에서 현저히 높은 보행 

성공률을 보였으며, 특히 고난도 지형에서 성능 격차가 크게 나타났다. 본 연구는 외부 감각 정보가 다음 
발 디딤 위치 선택이 중요한 지형에서의 보행 성능 향상에 기여함을 정량적·정성적 분석을 통해 보여준다. 

 

Ⅰ. 서론  

사족로봇은 험지 이동이 요구되는 재난 구조, 산업 

현장 점검 자동화 등 다양한 응용을 목표로 활발히 
연구되고 있다. 대표적으로 Kumar, Ashish, et al.[1]은 

고유 감각 정보 (Proprioceptive Information)를 

기반으로 로봇이 동역학적 변화를 빠르게 적응하도록 

하여 보행 성능을 향상시켰다. 이러한 고유 감각 정보 
기반 접근법은 로봇의 적응 능력을 크게 향상시켰으나, 

복잡한 지형이거나 발 디딤 위치 선택이 중요한 

환경에서는 보행 성능에 한계를 보인다. 

사족로봇 보행에 사용되는 감각 정보는 크게 고유 감각 

정보와 외부 감각 정보 (Exteroceptive Information)로 
구분된다. 고유 감각 정보는 관절 위치와 속도, 몸체 

자세 (Orientation) 등과 같이 로봇 내부 센서를 통해 

획득할 수 있는 정보를 의미한다. 반면 외부 감각 정보는 

RGB-D 카메라 영상이나 LiDAR 포인트 클라우드와 

같이 로봇 외부 환경을 관측하여 얻어지는 정보를 
의미한다. 대표적으로 Hoeller, David, et al.[2]은 외부 

감각 정보인 RGB-D 카메라 영상과 LiDAR 포인트 

클라우드를 적극적으로 사용하여 단순 보행을 넘어서 

점프와 숙이기와 같은 복합적인 스킬을 학습해 복잡한 
지형을 통과한다.  

본 연구에서는 외부 감각 정보가 다음 발 디딤 위치 

선택이 중요한 지형에서 사족로봇 보행 성능에 미치는 

영향을 분석하기 위해 고유 감각 정보 기반 모델과 외부 

감각 정보 기반 모델을 동일한 조건의 시뮬레이션 
환경에서 비교한다. 
 

II. 고유 감각 정보 기반 모델 

 고유 감각 정보 기반 모델은 고유 감각 정보만을 

사용하여 보행 행동을 출력하도록 설계된 모델로, 이하 

Blind 모델이라 한다. 본 모델은 End-to-End 
강화학습을 통해 학습한다.  
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[그림 1] Blind 모델과 Scandot 모델의 정성적 비교 결과. (좌) 

Blind 모델은 특정 난이도의 디딤돌 지형에 도달하면 앞발 또는 

뒷발이 발판 사이로 빠지며 보행에 실패한다. (우상) Scandot 

모델은 Blind 모델이 보행하지 못하기 시작하는 난이도의 

지형뿐만 아니라, (우하) 더 고난도의 지형에서도 안정적인 

보행을 수행한다. 

 

 액터 (Actor)는 관절 위치와 속도, 몸체 자세와 같은 

고유 감각 정보와 함께 최근 시점부터 과거 10개의 고유 

감각 정보를 누적한 히스토리 정보를 입력으로 사용한다. 
액터는 외부 지형 정보를 직접적으로 관측하지 않기 

때문에, 다음 발 디딤 위치는 오로지 로봇의 고유 감각 

정보를 기반으로 선택하게 된다. 
크리틱 (Critic)은 정확한 상태 가치를 추정하기 위해 

액터보다 풍부한 정보를 사용한다. 고유 감각 정보뿐만 
아니라, 시뮬레이션 환경에서만 접근 가능한 로봇의 질량 

및 무게 중심, 지면과의 마찰력과 같은 특권 정보  

(Privileged Information), 그리고 외부 지형 높이 정보를 

직접적으로 관측할 수 있는 Height Scandot 을 입력으로 
받아 상태 가치를 추정한다. 
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이렇게 설계된 Blind 모델은 고유 감각 정보만을 

사용하는 조건에서, 다음 발 디딤 위치 선택이 중요한 

지형에서의 보행 한계를 분석하기 위해 사용된다. 

III. 외부 감각 정보 기반 모델  

외부 감각 정보 기반 모델은 Blind 모델의 액터 구조를 

기반으로 하여, 외부 지형 높이 정보를 나타내는 Height 

Scandot 을 추가 입력으로 사용하는 모델로, 이하 
Scandot 모델이라 한다. 본 모델은 Blind 모델과 

동일하게 End-to-End 강화학습으로 외부 감각 정보를 

직접 활용하는 보행 정책을 학습한다. 

액터는 Blind 모델의 액터 구조를 기반으로 

설계되었으며, 고유 감각 정보와 최근 10 개의 고유 감각 
히스토리 정보에 더해 외부 감각 정보인 Height 

Scandot 을 추가 입력으로 사용한다. 이를 통해 액터는 

로봇의 고유 감각 정보뿐만 아니라 외부 감각 정보를 

함께 고려하여 다음 발 디딤 위치를 선택한다. 

크리틱은 Blind 모델과 동일하게 고유 감각 정보, 
시뮬레이션 환경에서만 접근 가능한 특권 정보, 그리고 

Height Scandot 을 입력으로 받아 상태 가치를 추정한다.  

이와 같이 설계된 Scandot 모델을 Blind 모델과 

비교함으로써, 발 디딤 위치 선택이 중요한 지형에서 
외부 감각 정보가 사족로봇 보행 성능에 미치는 영향을 

분석할 수 있다. 
 

IV. 실험  

본 실험은 다음 발 디딤 위치 선택에 따라 보행의 성공 

여부가 크게 갈리는 지형에서 외부 감각 정보의 영향을 
분석하기 위해 설계되었다. Blind 모델과 Scandot 모델은 

모두 PPO[3] 기반의 End-to-End 강화학습으로 

학습되었으며, 실험은 NVIDIA IsaacLab[4] 시뮬레이션 

환경에서 수행되었다. 실험 지형은 한 변의 길이가 8.0 

m 인 정사각형 영역으로 구성되며, 지형 중앙에는 한 
변의 길이가 2.0 m 인 정사각형 평지 플랫폼이 배치된다. 

평지 플랫폼을 제외한 나머지 영역은 정사각형 형태의 

디딤돌로 채워진다. 디딤돌 간의 중심 간 거리는 0.15 

m 로 고정되며, 디딤돌 한 변의 길이를 0.12 m 에서 0.05 
m 까지 0.01 m 씩 감소시키는 방식으로 총 8 단계의 

난이도를 정의한다. 이와 같이 정의된 다단계 난이도를 

기반으로 커리큘럼 러닝 (Curriculum Learning)[5] 

방식을 적용하여, 로봇이 점진적으로 난도가 증가하는 

지형에 노출되도록 구성하였다. 
로봇은 평지 플랫폼 중앙에서 출발하며, 전방을 향해 

0.7 m/s 의 일정한 속도로 이동하도록 명령 받는다. 보행 

성능은 로봇의 이동 거리를 기준으로 평가된다. 로봇이 

출발 위치로부터 2.0 m 이상 이동할 경우, 해당 난이도의 
보행을 성공으로 간주하여 다음 난이도의 지형에서 

생성된다. 반대로 이동 거리가 1.0 m 미만일 경우, 

실패로 간주하여 이전 난이도의 지형에서 생성되며, 

이외의 경우에는 동일한 난이도의 지형에서 생성된다.  

그림 1 은 Blind 모델과 Scandot 모델의 보행 성능 
차이를 정성적으로 보여준다. Blind 모델은 다음 발 디딤 

위치를 명확히 선택하지 못하고, 보행 과정에서 불안정한 

발 디딤을 보이며 전진한다. 이로 인해 비교적 보행이 

쉬운 난이도 1 과 2 의 지형은 통과하지만, 난이도 3 
이상의 지형에서는 앞발 또는 뒷발이 디딤돌 사이에 

빠지며 보행에 실패한다. 반면 Scandot 모델은 다음 발 

디딤 위치를 보다 정확하게 선택하여 안정적으로 

전진한다. 그 결과 Blind 모델이 보행에 실패한 난이도 3 

지형은 물론, 더 높은 난이도의 지형에서도 보행을 
수행하며 최고 난도 지형까지 통과하는 데 성공한다. 

 
[그림 2] Blind 모델과 Scandot 모델의 정량적 비교 결과. Blind 

모델은 난이도 1 과 난이도 2 에서만 제한적인 성공률을 보이고, 

난이도 3 이상에서는 보행에 실패한다. 반면 Scandot 모델은 

모든 난이도에서 높은 보행 성공률을 유지하였으며, 특히 

고난도 지형에서도 높은 성공률을 보인다. 

 

이러한 결과는 외부 감각 정보가 다음 발 디딤 위치 

선택이 중요한 지형에서 사족로봇 보행에 중요한 영향을 

미친다는 것을 보여준다.  
그림 2 는 Blind 모델과 Scandot 모델의 보행 성능 차

이를 정량적으로 보여준다. 두 모델을 모든 난이도에서 

10 회씩 에피소드를 수행하게 하고 성공률을 산출한다. 

Blind 모델은 난이도 1 에서 40%의 성공률을 보인다. 그

러나 난이도 2 에서 성공률이 10%로 급격히 감소하였고, 
난이도 3 이상의 지형에서는 한 번도 보행하지 못한다. 

반면 Scandot 모델은 모든 난이도에서 높은 성공률을 유

지한다. 특히 가장 높은 난이도의 지형에서도 80%의 성

공률을 기록한다. 이러한 결과는 외부 감각 정보가 디딤
돌 지형과 같은 발 디딤 위치 선택이 중요한 지형에서 

보행 성능 향상에 결정적인 기여를 한다는 것을 정량적

으로 보여준다. 
 

V. 결론  

 본 연구에서는 외부 감각 정보가 사족로봇 보행 성능에 

미치는 영향을 분석하기 위해, 고유 감각 정보만을 
사용하는 Blind 모델과 외부 감각 정보를 함께 사용하는 

Scandot 모델을 실험을 통해 비교하였다. 실험 결과를 

통해 외부 감각 정보가 다음 발 디딤 위치 선택이 

중요한 지형에서 보행 성공률을 크게 향상시킴을 
정량적·정성적으로 확인하였다. 
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