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Abstract 

 
Cloud-connected battery management systems generate massive volumes of operational data from electric 

vehicles and energy storage systems, but data quality degradation from sensor faults, communication failures, and 

noise measurement severely compromises monitoring accuracy and safety. This paper presents an intelligent data 

cleaning framework combining deep learning-based outlier detection and LSTM-based data restoration with feature 

fusion for cloud-based battery management. The proposed method employs temporal feature analysis to accurately 

detect dirty samples including outliers, noise-polluted data, and missing values, while a feature fusion approach 

combining temporal and model-based features enables precise data reconstruction. Validation using real electric bus 

operation data from a cloud-based monitoring platform demonstrates that the framework achieves 93.3% detection 

rate for noise-polluted samples, 100% detection for missing values, and maintains restoration accuracy of 98.97% for 

noise-polluted data and 97.89% for missing data. 
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Ⅰ. Introduction 

The proliferation of electric vehicles and large-

scale energy storage systems has generated 

unprecedented volumes of battery operational data. 

Cloud-based battery management systems (BMS) 

leverage advanced computing infrastructure to provide 

intelligent monitoring, predictive maintenance, and 

fleet-level optimization. However, the quality of 

collected battery data is frequently compromised by 

multiple factors including sensor malfunctions, 

wireless communication failures, electromagnetic 

interference, and network packet loss [1]. These data 

quality issues manifest as outliers, noise pollution, and 

missing values, which severely degrade the 

performance of state estimation algorithms, fault 

diagnosis systems, and predictive models. Traditional 

data cleaning methods such as cluster analysis, 

support vector machines (SVM), and recurrent neural 

networks (RNN) suffer from high misdiagnosis rates 

and limited reconstruction accuracy [2]. The 

fundamental challenge lies in distinguishing genuine 

battery behavior anomalies from measurement 

artifacts while accurately restoring corrupted data 

without introducing systematic biases [3].  

The proposed method presents a comprehensive 

intelligent data cleaning framework with the following 

key contributions 1) Development of an LSTM-based 

data quality assessment model that analyzes temporal 

features to accurately detect outliers, noise-polluted 

samples, and missing values with significantly reduced 

misdiagnosis compared to conventional methods. 2) 

Proposal of a feature fusion approach combining 

temporal features from LSTM networks and model-

based features from electrochemical relationships to 

achieve superior data reconstruction accuracy. 3) 

Integration framework for end-edged cloud 

architecture enabling practical deployment in cloud-

based vehicle battery management platforms. 

Ⅱ. Method 

 Cloud-based BMS architectures adopt end-edge-

cloud computing paradigms to enable scalable data 

processing and intelligent decision-making. The Cyber 

Hierarchy and Interactional Network (CHAIN) 

framework provides multi-scale insights by 

integrating real-time monitoring at the edge layer, 

intelligent processing at the fog layer, and advanced 

analytics at the cloud layer. The LSTM network 

processes battery time-series data to extract 

temporal features capturing sequential dependencies. 

Fig. 1 presents the flow chart of the proposed 

algorithm. For a data window X_t = [x_{t-w}, ..., x_t], 

the LSTM cell states evolve according to Eq. 1-5. 
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Where f(t), i(t), o(t) are forget, input, and output 

gates, C(t) is the cell state, h(t) is the hidden state, 

σ is the sigmoid function, and ⊙ denotes element-

wise multiplication. The outlier detection score 

combines three criteria in Eq. 6.  

( )( ) ( ) ( ) ( )statistical temporal c youtlie onsistencrS S S Sx t   += +  (6) 

Where α =0.4, β =0.3, γ =0.3 are optimized weights. 

The statistical score measures deviation of local 



distribution, temporal score evaluates consistency, 

and consistency scores checks physical plausibility.  

Ⅲ. Results and discussion 

The proposed data cleaning and restoration 

framework demonstrates robust performance for 

voltage and current in cloud datasets. Fig. 2, algorithm 

accurately detects missing data in both channels, 

achieving a 100% detection rate (59/59 samples), 

which confirms effectiveness of missing-data 

identification strategy. Although no random noise 

instances were present in evaluated dataset, with 

detection rates of 24.1% (19/79) for voltage and 

49.4% (39/79) for current, indicating greater 

sensitivity to abrupt current anomalies under dynamic 

operating conditions. Data restoration results are 

illustrated in Fig. 3 and Fig. 4 for voltage and current, 

respectively. For voltage restoration algorithm 

achieves high accuracy, with missing data MAE of 

0.0149V and MAPE of 0.46%, while noisy data 

restoration results in MAE of 0.1293V and MAPE of 

4.07%. The restored voltage signals remain within 

physically realistic natural discharge profile, 

demonstrating reliable reconstruction performance. 

Current restoration (Fig. 4) is more challenging due to 

rapid signal fluctuations; however, framework 

reconstructs missing current data with an MAE of 

0.3149A, indicating strong interpolation capability. 

MAPE becomes infinite because of near-zero 

reference values, making MAE an appropriate 

evaluation metric for current signals. Outlier 

restoration results further highlight adaptability to 

load variations. Fig. 5 presents error detected outliers, 

missing noisy data for voltage and current. Finally, Fig. 

6 presents the frequency distribution of restoration 

errors, further validating proposed approach for 

cloud-connected BMS. 
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Fig. 1 Flow chart of the proposed method. 

(a) (b) 

 
Fig. 2 (a)Voltage and (b) current original data in 

comparison with outliers’ detections along with noise. 

 
Fig. 3 Voltage restoration for missing data with LSTM   

 
Fig. 4 Current restoration for the missing data through 

LSTM in cloud. 

(a) (b) 

 
Fig. 5 Errors detected for outliers, missing and noisy 

data for a) voltage and b) current data. 

(a) (b) 

 
Fig. 6 Distribution of frequency error across different 

(a)voltage; (b) current samples. 
 

IV. Conclusion 

This paper presents an intelligent feedback-based 

continuous learning framework for cloud-based 

battery management systems, achieving 93.3% 

detection accuracy for noise-polluted data and 

achieving restoration accuracy exceeding 98.89%. The 

proposed approach enables reliable cloud data 

restoration for the BMS applications.  
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