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요 약

최근 엣지 AI 환경에서 연산량과 메모리 효율성을 개선하기 위한 방법으로, 가중치와 활성값을 2비트 정밀도로 제한하는

W2A2 양자화 기법이 연구되고 있다. 이러한 초저비트 모델의 성능 저하는 주로 고정밀도 교사(Teacher) 모델의 지식을

전이하는 양자화 지식 증류(Quantization Knowledge Distillation, QKD)를 통해 완화된다. 그러나 FP32 교사 모델과 W2A2

학생(Student) 모델 간의표현력차이로인해증류과정에서정보손실이발생하며, 이는 성능저하로이어진다. 기존 연구들은

중간정밀도의보조모델을추가하여이문제를완화했으나, 이는추가적인학습단계로인해학습비용과시간이증가한다. 본

연구는 추가적인 학습 비용 없이 가상 앵커를 활용하여 교사-학생 모델간 표현력 격차를 완화하는 VA-QKD(Virtual Anchor

Quantization Knowledge Distillation)를 제안한다. 제안 기법은 교사 모델의 출력값을 학습 과정에서 즉시 양자화하여 해당

결과를 학생 모델의 증류 타겟으로 사용한다. 이를 통해 학생 모델은 FP32 교사 출력과 해당 출력의 양자화 결과들을 손실

계산에 사용하여 학습한다. CIFAR-100 데이터셋 실험 결과, 제안 기법은 기존 QKD 대비 정확도를 향상시키면서 초저비트

양자화 모델의 경량화 효율을 유지하면서 성능 저하를 완화하였다.

I. 서론

최근 모바일 및 IoT(Internet of Things) 기반 엣지 디바이스에

서 실시간 추론 요구가 증가함에 따라, 심층 신경망(DNN)의 연산

량과 메모리 사용량을 줄이기 위한 경량화가 주요 과제로 다루어

지고 있다 [1]. 이러한 접근 중 하나로, 가중치(Weight)와 활성값

(Activation)을 모두 2비트 정밀도로 제한하는 W2A2가 초저비트

양자화 기법의 한 형태로서 연구되고 있다 [2]. W2A2는 FP32 모

델대비메모리사용량을최대 16배감소시키며, 곱셈 연산을 비트

연산으로 대체함으로써 연산 복잡도를 줄일 수 있다.

그러나초저비트양자화는모델의표현력을크게제한하며,이로

인한 추론 성능 저하가 발생한다. 이러한 성능 저하를 완화하기 위

한 방법으로, 교사(Teacher) 모델의 출력을 학생(Student) 모델이

학습하도록 하는 지식 증류(Knowledge Distillation, KD)가 주로

사용된다 [3]. 특히 양자화환경을고려하여설계된양자화지식증

류(Quantization Knowledge Distillation, QKD)는 비트 정밀도가

제한된 학생 모델이 FP32교사 모델의 출력을 학습하도록 함으로

써, 양자화로 인한 정확도 감소를 줄이는 데 활용된다 [4].

하지만W2A2와같이표현력이극도로제한된학생모델이 FP32

교사 모델의 출력을 직접 모방하는 경우, 두 모델 간 표현력 차이

로 인해 증류 과정에서 큰 정보 손실이 발생하여 학습이 불안정

해지거나 충분한 성능 향상을 얻지 못하는 문제가 존재한다 [5].

이를 해결하기 위해 기존 연구들은 INT8 또는 INT4 수준의 중간

정밀도 모델을 교사 보조자로 도입하는 다단계 증류 방식(Teacher

Assistant Knowledge Distillation, TAKD)을 제안하였다 [6]. 하
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지만 이 기법은 학습 비용과 학습 시간이 크게 증가한다는 한계가

존재한다.이러한 한계는 중간 정밀도 모델을 추가로 학습하는 구

조에서 기인한다. 중간 모델은 교사 출력과 학생 출력 간의 분포

차이를완화하는역할을수행하지만,이를위해별도의학습단계가

요구된다.

이에 본 연구는 중간 정밀도의 모델을 학습하지 않고도 교사–학

생 간 표현력 격차를 완화하는 중간 출력을 활용하는 VA-QKD프

레임워크를 제안한다. 구체적으로, FP32교사 모델의 출력을 학습

과정에서 즉시 양자화하여, FP32 출력보다 단순화된 형태의 중간

출력을 가상 앵커로 생성하고, 이를 학생 모델의 증류 타겟으로 정

답 라벨과 함께 학습을 수행한다.

II. 가상 앵커를 활용한 지식 증류 방법

본 연구에서 제안하는 VA-QKD 프레임워크는 가상 앵커 생성

단계와 이를 이용한 지식 증류 단계로 구성된다.

A. 가상 앵커 생성 단계

기존의 Teacher Assistant(TA) 기반 방법과 달리, 제안 기법은

별도의 보조네트워크를 학습하지 않는다. 대신 FP32교사 모델의

출력값에 양자화를 직접 적용하여 가상 앵커를 생성한다. 가상 앵

커는 다음과 같이 정의된다.

zVA = Q(zT , b) (1)

여기서 zT는 FP32 교사 모델의 출력을 의미하며, b는 가상 앵

커의 비트 정밀도를 나타낸다. 이 과정은 학습 과정 중 순전파 단

계에서 수행되는 수치 연산으로 구성되며, 역전파를 필요로 하지

않는다. 따라서 추가적인 메모리 사용이나 학습 시간 증가 없이



가상 앵커를 생성할 수 있다.

가상 앵커는 FP32 교사 출력의 상대적인 클래스 순위 정보를

유지하면서,비트정밀도를제한하여학생모델에게단순화된출력

분포를 제공한다.

B. 지식 증류 단계

학생(Student) 모델은 최종 정답(Hard Target)과 가상 앵커로부

터제공되는중간출력(Soft Target)을 함께사용하여학습한다. 이

를위해학생모델의출력은가상앵커및정답레이블과각각비교

되며, 이들로부터 계산된 손실을 결합하여 최종 손실을 구성한다.

그림 1: VA-QKD의 손실 함수 구성 및 학습 구조

그림 1은제안하는손실함수와전체학습구조를나타낸다. 교사

모델의 FP32출력을 양자화한 가상 앵커는 정답 라벨과 함께 학생

모델의 출력과 각각 비교되며, 이 과정에서 계산된 손실 항들은 합

산되어 최종 학습 손실로 사용된다.

III. 실험 결과 및 분석

A. 실험 결과

본연구는 CIFAR-100데이터셋을사용하여제안하는 VA-QKD

기법의 정량적 성능을 평가한다. 실험에는 ResNet-32 구조를 사

용하며, 학생 모델은 가중치와 활성값을 모두 2비트로 양자화한

W2A2 설정으로 학습한다. 비교 실험은 로짓(logit) 기반 증류 손

실, 특징 맵(feature map) 정렬 손실, 그리고 대조(contrastive) 손

실의 세 가지 설정에 대해 각각 수행되었으며 각 설정마다 동일한

W2A2환경에서 학습된 QKD모델과 VA-QKD모델의 성능을 비

교한다.

표 1: CIFAR-100에서 각 모델의 성능 비교
Model Bit-width (W/A) Top-1 Acc. (%) Model Size (MB) BOPs Reduct.

Teacher (FP32) 32 / 32 70.19 1.78 1×

VA-QKD (Logit) 2 / 2 65.06 0.11 256×
QKD (Logit) 2 / 2 64.97 0.11 256×

VA-QKD (Feature Map) 2 / 2 64.40 0.11 256×
QKD (Feature Map) 2 / 2 64.24 0.11 256×

VA-QKD (Contrastive) 2 / 2 64.64 0.11 256×
QKD (Contrastive) 2 / 2 64.48 0.11 256×

표 1은 W2A2 설정에서 QKD와 VA-QKD의 성능을 비교한 결

과를나타낸다. 실험결과, VA-QKD는기존 QKD모델대비 Top-

1정확도를 0.09%에서 0.16%까지 향상시킨다. 해당 성능 향상은

추가적인파라미터증가나별도의보조모델학습없이달성했다는

것에 의의가 있다.

B. 정성적 분석

모델이 분류 과정에서 활용하는 시각적 단서를 분석하기 위해

Grad-CAM을 적용하였다.

그림 2: Grad-CAM을 통한 기존 QKD 모델과 VA-QKD 모델의

활성화 비교

그림 2은 기존 QKD모델과 VA-QKD모델의 활성화 결과를 비

교한예시를보여준다. 기존 QKD모델은초저비트양자화에따른

정보손실로인해객체의전반적인형상을포착하지못하고활성화

영역이지엽적인특징에국한되는한계를보인다. 반면, VA-QKD

모델의활성화영역은객체의핵심영역에강하게집중하는패턴을

나타낸다.

이는 가상 앵커가 양자화 과정의 노이즈를 필터링하고 분류에

결정적인 정보만을 선별하여 전달함으로써 초저비트 환경에서도

모델이 분류에 필요한 시각적 단서를 보다 일관되게 활용함을 정

성적으로 확인할 수 있다.
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