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요 약

본 논문에서는 5G DMRS (DeModulation Reference Signal) 인덱스의 분류 성능 향상을 위해 이미지 생성 모델 중 하나인 Diffusion 모델을 5G
DMRS 신호 처리에 적용을 하여 잡음이 많은 신호를 재구성하는 구조를 처음으로 제안한다. 이를 위해 제안한 구조에서 신호데이터를 이미지화하는
과정을 거치며 Diffusion 모델은 높은 SNR 환경에서 학습된 신호 분포를 기반으로 낮은 SNR 환경의 신호를 재구성함으로써 DMRS 패턴 학습을
강화한다. 성능을 확인하기 위해 직접 구현한 5G 소프트웨어 모뎀을 통해 실제 채널 환경에서 DMRS 데이터를 수집하였다. 실험을 통해 기존의 타
모델 대비 우수한 정확도를 확인했다. 특히, –4.11dB 환경에서 Diffusion 모델을 적용한 제안 방법은 약 37%의 정확도 향상이 있었다. 이는 Diffusion
모델을 통해 영상처리 영역 뿐만 아니라 무선 신호 처리 및 분류의 영역에서도 획기적인 성능 개선이 실질적으로 가능할 수 있음을 시사한다.

Ⅰ. 서 론

5G 수신 신호는 채널 환경에 따라 손상될 수 있으며, 수신자는 DMRS

(DeModulation Reference Signal)를 활용하여손상된 신호를 복구한다. 5

G 표준 절차에 따르면 각 수신자는 이를 위해 수신된 DMRS 인덱스를

블라인드 탐지 과정을 통해 판단해야한다. 이러한 인덱스 식별 과정을 D

MRS 인덱스 분류라고 한다. DMRS 인덱스의 분류 성능을 높이는 것은

신호 복구정확도와 직결되지만, 낮은 SNR 환경에서는 신호패턴인식이

어려워 분류 성능이 저하된다 [1].

최근 이미지 생성 분야에서는 Diffusion 모델을 활용하여 데이터 분포

를 학습하며, 순차적인 노이즈 제거를 통해 고품질 데이터를 생성하는 연

구가 활발히 진행되고 있다 [2, 3]. 그러나 이러한 Diffusion 모델의 특성

은 신호 처리 분야에 실제로 적용된 사례는 아직 없다. 본 논문에서는 높

은 SNR 환경에서 수집된 신호 데이터의 분포를 학습한 Diffusion 모델을

이용해 잡음이 많은 신호를 재구성하는 구조를 제안한다.

Ⅱ. 본론

본 장에서는 DMRS 데이터 이미지화 기법과 이미지화된 DMRS 데이

터를 Diffusion 모델의 입력으로 하여, 신호 재구성 후 DMRS 인덱스 분

류 과정을 보여준다.

1. 신호 이미지화 기법

신호를 이미지 형태로 변환하면 공간적 특성도 가질 수 있다. 복소수로

구성된 DMRS 신호의 실수부, 허수부, 진폭을 각각 RGB 채널에 매핑하

여 3채널의 이미지형태로변환한다. 식(1)은 각 채널에 DMRS 구성요소

를 할당하는 식이다:

  

      

  ≤  ≤  
식(1)에서 는 하나의 DMRS 실수부(I)와 허수부(Q)의 요소 위치를 나타
내며, N은 입력신호의길이이다. 위 식을기반으로 DMRS는  × 크기
의이미지로변환되며, 는   로계산된다. 와 에각각 와

를 할당하고, 에 진폭 을 할당한다. 신호를 이미지 형태로
변환함으로써 신호의 공간적 특성을 더 강건하게 학습한다.

2. Diffusion 기반의 신호 재구성 및 분류 기법

그림 1은 제안하는전체 구조를 보여주며, 이는 경량화된 Lite-UNet 기

반의 Diffusion 모델과 분류 모델 Light-VGG로 구성된다. 해당 구조에서

학습 과정은 Diffusion 모델을 학습하는 Step 1과 이를 활용하여 분류 모

델을학습시키는 Step 2가 순차적으로이루어진다. Diffusion 모델의학습

과정에서는 데이터에 노이즈를 점진적으로 추가하는 확산 과정(Forward

Process)과 이를 추정하는 노이즈 예측(Noise Prediction) 과정이 있다.

확산 과정은 식(2)와 같이 정의된다:

       ∼  
식(2)에서 는원본데이터를 의미하며, 는 단계까지누적된 원본정
보이다. 는원본신호에 노이즈 를 단계만큼순차적으로 추가하여생
성된다. 이후 노이즈 예측 단계에서는 Lite-UNet을 활용해 와 시점정
보 를 임베딩 한 값을 입력받아, 확산 과정에서 주입된 노이즈 을 예측
한다 [4]. Diffusion 모델의 손실 함수는 식(3)와 같이 정의된다:

   
식(3)에 의해 Diffusion 모델은확산 과정에서실제주입된노이즈 와 Lit
e-UNet이 예측한노이즈 간의MSE(Mean Squared Error)를 최소화하
는 방향으로 학습을 수행하며, 이를 통해 신호의 잠재적인 분포를 추정하

도록학습한다. 학습이완료되면 Diffusion 모델은 파라미터가업데이트되

지 않도록 고정한 후 분류 모델 학습을 시작한다. 이 과정에서 사전 학습

된 Diffusion 모델은 신호를 재구성하는 모듈로 이용된다. 이미지화된 D

MRS 데이터는 식(4)의 역확산 과정(Reverse Process)을 거친 재구성된

데이터가분류 모델의 입력으로사용된다. 식(4)은 역확산과정의식이다:

  
   

    



식(4)에서 는 단계에서 원본정보가유지되는정도이며, 는분포기
반 재구성을 위한 확률적 샘플링 항이다. 재구성 과정에서 가우시안 노이

즈로부터 Lite-UNet이예측한노이즈를 번반복적으로 제거하며 신호를
생성한다. 분류기 학습이끝나면파라미터가업데이트되지 않게고정한다.

식(5)와 식(6)은 확산 과정 및 역확산 과정의 확률 분포로 정의된 식이다:

       
     ∑ 

식(5)은 노이즈를 추가하는 순방향확률분포이며, 식(6)은 신호를 재구성

하는 역방향확률분포이다. 검증 단계에서는 Diffusion 모델은 낮은 SNR

의 신호 정보를 보존하며, 노이즈를 반복적으로 제거하여 신호의 패턴을

뚜렷하게 만들어 DMRS 인덱스 분류 정확도를 높인다.

Ⅲ. 실험 환경 및 결과 분석

본 장에서는 제안하는 Diffusion 기반 신호 재구성 성능을 평가하기 위

해 실험 환경과 결과에 대한 분석을 기술한다.

SNR (dB) -2.51, -2.74, -2.81, -2.99, -3.13, -3.42, -3.7, -4.11

DMRS 신호 길이 144x2 (실수부, 허수부)

표 1. 평가에 사용되는 DMRS 신호 데이터

모델학습과정에서 SNR이 23.37dB인 신호의분포를기준분포로이용

하였으며, 검증 단계에서는 다양한 실제 환경에서 수집된 신호 데이터를

활용했다. 이는 표 1을 통해 확인할 수 있다. Diffusion 모델은 SDEdit 구

조를 활용하였고 분류 모델은 Light-VGG를 활용하였다. 본 연구에서는

Diffusion 모델 적용 여부에 따른 인덱스 분류 성능과 역확산 과정에서의

하이퍼파라미터 값에 따른 성능 변화를 분석하였다.

그림 2 (a)는 SNR에 따른 DMRS 인덱스 분류 성능을 나타낸다. 모든

SNR 환경에서제안한 구조의성능이 타모델들에 비해높은성능을보였

다. 특히, SNR이 가장 낮은 환경에서 Light-VGG만 이용한 경우에 비해

약 37% 성능개선을이뤄냈다. 이는 재구성된신호가패턴학습에 있어서

용이함을 나타낸다. 그림 2 (b)는 역확산 과정에서 사용되는 값에 따른

성능 변화이다. 값이 감소할수록 전반적인 성능이 향상됐으나, =20일
경우 성능이 저하되는 것을 확인했다. 이를 통해 값의 임계치가 모델 성
능에 중요한 요소임을 확인했다.

그림 3. t-SNE 결과

그림 3은 인덱스에 따른 신호 데이터의 분포를 확인한 t-SNE 결과이

다. Diffusion 모델을 통해 재구성된 신호의 분포는 23.37dB 환경에서 수

집한 DMRS의 분포와 유사하게 군집이 형성되었다. 이는 Diffusion 모델

이 신호를 효과적으로 재구성하였음을 의미한다.

Ⅳ. 결론

본 논문에서는 Diffusion 모델을 활용한 신호 재구성 구조를 제안한다.

제안한구조는높은 SNR 환경의신호데이터분포를학습한 Diffusion 모

델이낮은 SNR 신호데이터를재구성함으로써 DMRS 인덱스분류성능

을 향상하였다. 향후 기존 Diffusion 모델을 복소수 형태의 신호 데이터

처리에대한효과적인 구조로의개선을통해성능 향상을기대할수있다.
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그림 2. DMRS 인덱스 분류 모델 정확도 및 t값에 따른 정확도

그림 1. DMRS 데이터 이미지화 및 Diffusion 모델 기반 신호 재구성 과정


